[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Distributional Convergence of Subspace Estimates in FastICA: A Bootstrap Study

  • Conference paper
Latent Variable Analysis and Signal Separation (LVA/ICA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7191))

  • 2506 Accesses

Abstract

Independent component analysis (ICA) is possibly the most widespread approach to solve the blind source separation (BSS) problem. Many different algorithms have been proposed, together with an extensive body of work on the theoretical foundations and limits of the methods.

One practical concern about the use of ICA with real-world data is the reliability of its estimates. Variations of the estimates may stem from the inherent stochastic nature of the algorithm, or deviations from the theoretical assumptions. To overcome this problem, some approaches use bootstrapped estimates. The bootstrapping also allows identification of subspaces, since multiple separated components can share a common pattern of variation, when they belong to the same subspace. This is a desired ability, since real-world data often violates the strict independence assumption.

Based on empirical process theory, it can be shown that FastICA and bootstrapped FastICA are consistent and asymptotically normal. In the context of subspace analysis, the normal convergence is not satisfied. This paper shows such limitation, and how to circumvent it, when one can estimate the canonical directions within the subspace.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hyvärinen, A., Karhunen, J., Oja, E.: Independent component analysis: algorithms and applications. Wiley Interscience (2001)

    Google Scholar 

  2. Comon, P.: Independent Component Analysis, a new concept? Signal Processing 36(3), 287–314 (1994); Special issue on Higher-Order Statistics. hal-00417283

    Article  MATH  Google Scholar 

  3. Cichocki, A., Amari, S.: Adaptive Blind Signal and Image Processing: Learning Algorithms and Applications. Wiley (2003)

    Google Scholar 

  4. Hyvärinen, A.: Fast and robust fixed-point algorithms for independent component analysis. IEEE Transactions on Neural Networks 10(3), 626–634 (1999)

    Article  Google Scholar 

  5. Hyvärinen, A., Oja, E.: Independent component analysis: algorithms and applications. Neural Networks 13(4-5), 411–430 (2000)

    Article  Google Scholar 

  6. Oja, E., Yuan, Z.: The fastica algorithm revisited: Convergence analysis. IEEE Transactions on Neural Networks 17(6), 1370–1381 (2006)

    Article  Google Scholar 

  7. Tichavsky, P., Koldovsky, Z., Oja, E.: Performance analysis of the fastica algorithm and cramer-rao bounds for linear independent component analysis. IEEE Transactions on Signal Processing 54(4), 1189–1203 (2006)

    Article  MathSciNet  Google Scholar 

  8. Ylipaavalniemi, J., Vigário, R.: Analyzing consistency of independent components: An fMRI illustration. NeuroImage 39(1), 169–180 (2008)

    Article  Google Scholar 

  9. Harmeling, S., Meinecke, F., Müller, K.R.: Injecting noise for analysing the stability of ICA components. Signal Processing 84(2), 255–266 (2004)

    Article  MATH  Google Scholar 

  10. Huettel, S.A., Song, A.W., McCarthy, G.: Functional Magnetic Resonance Imaging, 1st edn. Sinauer Associates, Sunderland (2004)

    Google Scholar 

  11. Ylipaavalniemi, J., Savia, E., Malinen, S., Hari, R., Vigário, R., Kaski, S.: Dependencies between stimuli and spatially independent fMRI sources: Towards brain correlates of natural stimuli. NeuroImage 48(1), 176–185 (2009)

    Article  Google Scholar 

  12. Ylipaavalniemi, J., Vigário, R.: Subspaces of Spatially Varying Independent Components in fMRI. In: Davies, M.E., James, C.J., Abdallah, S.A., Plumbley, M.D. (eds.) ICA 2007. LNCS, vol. 4666, pp. 665–672. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  13. Reyhani, N., Ylipaavalniemi, J., Vigário, R., Oja, E.: Consistency and asymptotic normality of fastica and bootstrap fastica. Signal Processing (2011) (submitted)

    Google Scholar 

  14. van der Vaart, A.W., Wellner, J.A.: Weak Convergence and Empirical Processes: With applications to Statistics. Springer, New York (1996)

    Book  MATH  Google Scholar 

  15. Henze, N., Zirkler, B.: A class of invariant consistent tests for multivariate normality. Commun. Statist.-Theor. Meth. 19(10) (1990)

    Google Scholar 

  16. Anderson, T.: An Introduction to Multivariate Statistical Analysis. Wiley Interscience (2003)

    Google Scholar 

  17. Ylipaavalniemi, J., Soppela, J.: Arabica: Robust ICA in a Pipeline. In: Adali, T., Jutten, C., Romano, J.M.T., Barros, A.K. (eds.) ICA 2009. LNCS, vol. 5441, pp. 379–386. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Fabian Theis Andrzej Cichocki Arie Yeredor Michael Zibulevsky

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ylipaavalniemi, J., Reyhani, N., Vigário, R. (2012). Distributional Convergence of Subspace Estimates in FastICA: A Bootstrap Study. In: Theis, F., Cichocki, A., Yeredor, A., Zibulevsky, M. (eds) Latent Variable Analysis and Signal Separation. LVA/ICA 2012. Lecture Notes in Computer Science, vol 7191. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28551-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28551-6_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28550-9

  • Online ISBN: 978-3-642-28551-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics