[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Block Component Analysis, a New Concept for Blind Source Separation

  • Conference paper
Latent Variable Analysis and Signal Separation (LVA/ICA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7191))

Abstract

The fact that the decomposition of a matrix in a minimal number of rank-1 terms is not unique, leads to a basic indeterminacy in factor analysis. Factors and loadings are only unique under certain assumptions. Working in a multilinear framework has the advantage that the decomposition of a higher-order tensor in a minimal number of rank-1 terms (its Canonical Polyadic Decomposition (CPD)) is unique under mild conditions. We have recently introduced Block Term Decompositions (BTD) of a higher-order tensor. BTDs write a given tensor as a sum of terms that have low multilinear rank, without having to be rank-1. In this paper we explain how BTDs can be used for factor analysis and blind source separation. We discuss links with Canonical Polyadic Analysis (CPA) and Independent Component Analysis (ICA). Different variants of the approach are illustrated with examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bruckstein, A.M., Donoho, D.L., Elad, M.: From sparse solutions of systems of equations to sparse modeling of signals and images. SIAM Rev. 51(1), 34–81 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Candes, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. on Information Theory 52(2), 489–509 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Carroll, J.D., Chang, J.J.: Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart–Young” decomposition. Psychometrika 35(3), 283–319 (1970)

    Article  MATH  Google Scholar 

  4. Cichocki, A., Zdunek, R., Phan, A.H., Amari, S.I.: Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory Multi-way Data Analysis and Blind Source Separation. John Wiley & Sons (2009)

    Google Scholar 

  5. Comon, P.: Independent Component Analysis, a new concept? Signal Processing 36(3), 287–314 (1994)

    Article  MATH  Google Scholar 

  6. Comon, P., Jutten, C. (eds.): Handbook of Blind Source Separation, Independent Component Analysis and Applications. Academic Press (2010)

    Google Scholar 

  7. Daubechies, I.: Ten Lectures on Wavelets. CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 61. SIAM (1994)

    Google Scholar 

  8. De Lathauwer, L.: Decompositions of a higher-order tensor in block terms — Part I: Lemmas for partitioned matrices. SIAM J. Matrix Anal. Appl. 30, 1022–1032 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. De Lathauwer, L.: Decompositions of a higher-order tensor in block terms — Part II: Definitions and uniqueness. SIAM J. Matrix Anal. Appl. 30, 1033–1066 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. De Lathauwer, L.: Blind separation of exponential polynomials and the decomposition of a tensor in rank-(L r , L r , 1) terms. SIAM J. Matrix Anal. Appl. 32(4), 1451–1474 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. De Lathauwer, L.: A short introduction to tensor-based methods for factor analysis and blind source separation. In: Proc. 7th Int. Symp. on Image and Signal Processing and Analysis (ISPA 2011), Dubrovnik, Croatia, September 4–6, pp. 558–563 (2011)

    Google Scholar 

  12. De Lathauwer, L., de Baynast, A.: Blind deconvolution of DS-CDMA signals by means of decomposition in rank-(1,L,L) terms. IEEE Trans. on Signal Processing 56(4), 1562–1571 (2008)

    Article  MathSciNet  Google Scholar 

  13. De Lathauwer, L., Nion, D.: Decompositions of a higher-order tensor in block terms — Part III: Alternating least squares algorithms. SIAM J. Matrix Anal. Appl. 30, 1067–1083 (2008)

    Article  MATH  Google Scholar 

  14. Harshman, R.A.: Foundations of the PARAFAC procedure: Models and conditions for an “explanatory” multi-modal factor analysis. UCLA Working Papers in Phonetics 16 (1970)

    Google Scholar 

  15. Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. John Wiley & Sons (2001)

    Google Scholar 

  16. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51(3), 455–500 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kroonenberg, P.M.: Applied Multiway Data Analysis. Wiley (2008)

    Google Scholar 

  18. Nion, D., De Lathauwer, L.: Block component model based blind DS-CDMA receivers. IEEE Trans. on Signal Processing 56(11), 5567–5579 (2008)

    Article  MathSciNet  Google Scholar 

  19. Nion, D., De Lathauwer, L.: An enhanced line search scheme for complex-valued tensor decompositions. Application in DS-CDMA. Signal Processing 88(3), 749–755 (2008)

    Article  MATH  Google Scholar 

  20. Sidiropoulos, N.D., Giannakis, G.B., Bro, R.: Blind PARAFAC receivers for DS-CDMA systems. IEEE Trans. Signal Process. 48(3), 810–823 (2000)

    Article  Google Scholar 

  21. Smilde, A., Bro, R., Geladi, P.: Multi-way Analysis with Applications in the Chemical Sciences. John Wiley & Sons, Chichester (2004)

    Book  Google Scholar 

  22. Sorber, L., Van Barel, M., De Lathauwer, L.: Optimization-based algorithms for tensor decompositions: Canonical Polyadic Decomposition, decomposition in rank-(L r ,L r ,1) terms and a new generalization. Tech. rep. 2011-182, ESAT-SISTA, K.U.Leuven (Leuven, Belgium)

    Google Scholar 

  23. Tomasi, G., Bro, R.: A comparison of algorithms for fitting the PARAFAC model. Comp. Stat. & Data Anal. 50(7), 1700–1734 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Fabian Theis Andrzej Cichocki Arie Yeredor Michael Zibulevsky

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

De Lathauwer, L. (2012). Block Component Analysis, a New Concept for Blind Source Separation. In: Theis, F., Cichocki, A., Yeredor, A., Zibulevsky, M. (eds) Latent Variable Analysis and Signal Separation. LVA/ICA 2012. Lecture Notes in Computer Science, vol 7191. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28551-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28551-6_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28550-9

  • Online ISBN: 978-3-642-28551-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics