Abstract
The fact that the decomposition of a matrix in a minimal number of rank-1 terms is not unique, leads to a basic indeterminacy in factor analysis. Factors and loadings are only unique under certain assumptions. Working in a multilinear framework has the advantage that the decomposition of a higher-order tensor in a minimal number of rank-1 terms (its Canonical Polyadic Decomposition (CPD)) is unique under mild conditions. We have recently introduced Block Term Decompositions (BTD) of a higher-order tensor. BTDs write a given tensor as a sum of terms that have low multilinear rank, without having to be rank-1. In this paper we explain how BTDs can be used for factor analysis and blind source separation. We discuss links with Canonical Polyadic Analysis (CPA) and Independent Component Analysis (ICA). Different variants of the approach are illustrated with examples.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bruckstein, A.M., Donoho, D.L., Elad, M.: From sparse solutions of systems of equations to sparse modeling of signals and images. SIAM Rev. 51(1), 34–81 (2009)
Candes, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. on Information Theory 52(2), 489–509 (2006)
Carroll, J.D., Chang, J.J.: Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart–Young” decomposition. Psychometrika 35(3), 283–319 (1970)
Cichocki, A., Zdunek, R., Phan, A.H., Amari, S.I.: Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory Multi-way Data Analysis and Blind Source Separation. John Wiley & Sons (2009)
Comon, P.: Independent Component Analysis, a new concept? Signal Processing 36(3), 287–314 (1994)
Comon, P., Jutten, C. (eds.): Handbook of Blind Source Separation, Independent Component Analysis and Applications. Academic Press (2010)
Daubechies, I.: Ten Lectures on Wavelets. CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 61. SIAM (1994)
De Lathauwer, L.: Decompositions of a higher-order tensor in block terms — Part I: Lemmas for partitioned matrices. SIAM J. Matrix Anal. Appl. 30, 1022–1032 (2008)
De Lathauwer, L.: Decompositions of a higher-order tensor in block terms — Part II: Definitions and uniqueness. SIAM J. Matrix Anal. Appl. 30, 1033–1066 (2008)
De Lathauwer, L.: Blind separation of exponential polynomials and the decomposition of a tensor in rank-(L r , L r , 1) terms. SIAM J. Matrix Anal. Appl. 32(4), 1451–1474 (2011)
De Lathauwer, L.: A short introduction to tensor-based methods for factor analysis and blind source separation. In: Proc. 7th Int. Symp. on Image and Signal Processing and Analysis (ISPA 2011), Dubrovnik, Croatia, September 4–6, pp. 558–563 (2011)
De Lathauwer, L., de Baynast, A.: Blind deconvolution of DS-CDMA signals by means of decomposition in rank-(1,L,L) terms. IEEE Trans. on Signal Processing 56(4), 1562–1571 (2008)
De Lathauwer, L., Nion, D.: Decompositions of a higher-order tensor in block terms — Part III: Alternating least squares algorithms. SIAM J. Matrix Anal. Appl. 30, 1067–1083 (2008)
Harshman, R.A.: Foundations of the PARAFAC procedure: Models and conditions for an “explanatory” multi-modal factor analysis. UCLA Working Papers in Phonetics 16 (1970)
Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. John Wiley & Sons (2001)
Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51(3), 455–500 (2009)
Kroonenberg, P.M.: Applied Multiway Data Analysis. Wiley (2008)
Nion, D., De Lathauwer, L.: Block component model based blind DS-CDMA receivers. IEEE Trans. on Signal Processing 56(11), 5567–5579 (2008)
Nion, D., De Lathauwer, L.: An enhanced line search scheme for complex-valued tensor decompositions. Application in DS-CDMA. Signal Processing 88(3), 749–755 (2008)
Sidiropoulos, N.D., Giannakis, G.B., Bro, R.: Blind PARAFAC receivers for DS-CDMA systems. IEEE Trans. Signal Process. 48(3), 810–823 (2000)
Smilde, A., Bro, R., Geladi, P.: Multi-way Analysis with Applications in the Chemical Sciences. John Wiley & Sons, Chichester (2004)
Sorber, L., Van Barel, M., De Lathauwer, L.: Optimization-based algorithms for tensor decompositions: Canonical Polyadic Decomposition, decomposition in rank-(L r ,L r ,1) terms and a new generalization. Tech. rep. 2011-182, ESAT-SISTA, K.U.Leuven (Leuven, Belgium)
Tomasi, G., Bro, R.: A comparison of algorithms for fitting the PARAFAC model. Comp. Stat. & Data Anal. 50(7), 1700–1734 (2006)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
De Lathauwer, L. (2012). Block Component Analysis, a New Concept for Blind Source Separation. In: Theis, F., Cichocki, A., Yeredor, A., Zibulevsky, M. (eds) Latent Variable Analysis and Signal Separation. LVA/ICA 2012. Lecture Notes in Computer Science, vol 7191. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28551-6_1
Download citation
DOI: https://doi.org/10.1007/978-3-642-28551-6_1
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-28550-9
Online ISBN: 978-3-642-28551-6
eBook Packages: Computer ScienceComputer Science (R0)