[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Optimizing Motion of Robotic Manipulators in Interaction with Human Operators

  • Conference paper
Intelligent Robotics and Applications (ICIRA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7101))

Included in the following conference series:

Abstract

Recently, the problem of how to manipulate industrial robots that interact with human operators attracts a lot of attention in robotics research. This interest stems from the insight that the integration of human operators into robot based manufacturing systems may increase productivity by combining the abilities of machines with those of humans. In such a Human-Robot-Interaction (HRI) setting, the challenge is to manipulate the robots both safely and efficiently. This paper proposes an online motion planning approach for robotic manipulators with HRI based on model predictive control (MPC) with embedded mixed-integer programming. Safety-relevant regions, which are potentially occupied by the human operators, are generated online using camera data and a knowledge-base of typical human motion patterns. These regions serve as constraints of the optimization problem solved online to generate control trajectories for the robot. As described in the last part of the paper, the proposed method is realized for a HRI scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bennewitz, M., Burgard, W., Cielniak, G., Thrun, S.: Learning motion patterns of people for compliant robot motion. Int. J. of Robot. Research 24(1), 31–48 (2005)

    Article  Google Scholar 

  2. Blackmore, L., Williams, B.C.: Optimal manipulator path planning with obstacles using disjunctive programming. In: American Control Conf., pp. 3200–3202 (2006)

    Google Scholar 

  3. Camacho, E.F., Bordons, C.: Model Predictive Control. Springer, Heidelberg (2004)

    MATH  Google Scholar 

  4. Ding, H., Reißig, G., Groß, D., Stursberg, O.: Mixed-integer programming for optimal path planning of robotic manipulators. In: IEEE Conf. on Autom. Sci. and Eng. (accepted 2011)

    Google Scholar 

  5. Ding, H., Reißig, G., Stursberg, O.: Increasing efficiency of optimization-based path planning for robotic manipulators. In: IEEE Conf. on Decision and Control and European Control Conf. (accepted 2011)

    Google Scholar 

  6. Ding, H., Reißig, G., Wijaya, K., Bortot, D., Bengler, K., Stursberg, O.: Human arm motion modeling and long-term prediction for safe and efficient human-robot-interaction. In: IEEE Int. Conf. Robot. and Autom., pp. 5875–5880 (2011)

    Google Scholar 

  7. Ding, H., Zhou, M., Stursberg, O.: Optimal path planning in the workspace for articulated robots using mixed integer programming. In: IEEE/RSJ Int. Conf. on Intell. Robots and Syst., pp. 5770–5775 (2009)

    Google Scholar 

  8. Fainekos, G., Girard, A., Kress-Gazit, H., Pappas, G.: Temporal logic motion planning for dynamic robots. Automatica 45(2), 343–352 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Flash, T., Hogan, N.: The coordination of arm movements: an experimentally confirmed mathematical model. J. of Neuroscience 5(7), 1688–1703 (1985)

    Google Scholar 

  10. Haddadin, S., Schaeffer, A., Hirzinger, G.: Requirements for safe robots: measurements, analysis and new insights. Int. J. of Robot. Research 28, 1507–1527 (2008)

    Article  Google Scholar 

  11. Hsu, D., Kindel, R., Latombe, J.C., Rock, S.: Randomized kinodynamic motion planning with moving obstacles. Int. J. of Robot. Research 21(3), 233–255 (2002)

    Article  MATH  Google Scholar 

  12. Hu, W., Xiao, X., Fu, Z., Xie, D., Tan, T., Maybank, S.: A system for learning statistical motion patterns. IEEE Trans. Pattern Anal. Mach. Intell. 28(9), 1450–1464 (2006)

    Article  Google Scholar 

  13. Johanssona, R., Robertssona, A., Nilsson, K., Verhaegenc, M.: State-space system identification of robot manipulator dynamics. Mechatronics 10, 403–418 (2000)

    Article  Google Scholar 

  14. Karaman, S., Frazzoli, E.: Sampling-based algorithms for optimal motion planning. Int. J. of Robot. Research 30(7), 846–894 (2011)

    Article  MATH  Google Scholar 

  15. Kavraki, L., Svestka, P., Latombe, J., Overmars, M.: Probabilistic roadmaps for path planning in high-dimensional configuration space. IEEE Trans. on Robot. and Autom. 12(4), 566–580 (1996)

    Article  Google Scholar 

  16. Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. Int. J. of Robot. Research 5(1), 90–98 (1986)

    Article  Google Scholar 

  17. Kuffner, J., LaValle, S.: RRT-connect: An efficient approach to single-query path planning. In: Proc. IEEE Int. Conf. on Robot. and Autom., pp. 995–1001 (2000)

    Google Scholar 

  18. Latombe, J.: Robot Motion Planning. Kluwer (1991)

    Google Scholar 

  19. LaValle, S.: Planning Algorithms. Cambridge University Press (2006)

    Google Scholar 

  20. Mayne, D., Rawlings, J., Rao, C., Scokaert, P.: Constrained model predictive control: stability and optimality. Automatica 36, 789–814 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. Santis, A., Siciliano, B., Luca, A., Bicchi, A.: An atlas of physical human-robot interaction. Mechanism and Machine Theory 43, 253–270 (2008)

    Article  MATH  Google Scholar 

  22. Stursberg, O., Krogh, B.H.: Efficient Representation and Computation of Reachable Sets for Hybrid Systems. In: Maler, O., Pnueli, A. (eds.) HSCC 2003. LNCS, vol. 2623, pp. 482–497. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  23. Vasquez, D., Fraichard, T., Laugier, C.: Growing hidden markov models: An incremental tool for learning and predicting human and vehicle motion. Int. J. of Robot. Research 28(11-12), 1486–1506 (2009)

    Article  Google Scholar 

  24. Williams, H.P.: Model building in mathematical programming, 2nd edn. Wiley (1985)

    Google Scholar 

  25. Yang, Y., Brock, O.: Elastic roadmaps - motion generation for autonomous mobile manipulation. Autonomous Robots 28, 113–130 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ding, H., Wijaya, K., Reißig, G., Stursberg, O. (2011). Optimizing Motion of Robotic Manipulators in Interaction with Human Operators. In: Jeschke, S., Liu, H., Schilberg, D. (eds) Intelligent Robotics and Applications. ICIRA 2011. Lecture Notes in Computer Science(), vol 7101. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25486-4_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25486-4_52

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25485-7

  • Online ISBN: 978-3-642-25486-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics