[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

General Limits in Black-Box Optimization

  • Chapter
  • First Online:
Analyzing Evolutionary Algorithms

Part of the book series: Natural Computing Series ((NCS))

  • 2208 Accesses

Abstract

We already observed that evolutionary algorithms are usually thought of as general problem solvers. This implies that they are designed according to a general idea of how search should be implemented. In the case of evolutionary algorithms this idea stems from an understanding of natural evolution. More importantly, they are not designed in a way tailored toward a specific kind of optimization problem. We call this way of doing optimization while being in this sense oblivious to the concrete problem instance at hand black-box optimization. In this chapter we make precise what we mean when talking of black-box optimization. This allows us to recognize general limitations on the performance of any algorithm tackling the problem of black-box optimization. On one hand this helps us to get a clearer picture of what we can and cannot expect from evolutionary algorithms. On the other hand it even yields practically useful lower bounds on the performance of evolutionary algorithms. This is surprising good news since we consider a very general framework without concrete references to evolutionary algorithms that covers an enormous array of optimization algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Anil, R.P. Wiegand, Black-box search by elimination of fitness functions, in 10th ACM SIGEVO Workshop on Foundations of Genetic Algorithms (FOGA 2009), Orlando, ed. by I. Garibay, T. Jansen, R.P. Wiegand, A.S. Wu (ACM, New York, 2009), pp. 67–78

    Google Scholar 

  2. A. Auger, O. Teytaud, Continuous lunches are free! in Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2007), London (ACM, New York, 2007), pp. 916–922

    Google Scholar 

  3. B. Doerr, C. Winzen, Playing Mastermind with constant-size memory, in 29th International Symposium on Theoretical Aspects of Computer Science (STACS 2012), Paris, ed. by C. Dürr, T. Wilke. Leibniz International Proceedings in Informatics, vol. 14 (Dagstuhl Publishing, Saarbrücken, 2012), pp. 441–452

    Google Scholar 

  4. B. Doerr, C. Winzen, Reducing the arity in unbiased black-box complexity. in Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2012), Philadelphia (ACM, New York, 2012), pp. 1309–1316

    Google Scholar 

  5. B. Doerr, J. Lengler, T. Kötzing, C. Winzen, Black-box complexity of combinatorial problems, in Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2011), Dublin (ACM, New York, 2011), pp. 981–988

    Google Scholar 

  6. B. Doerr, D. Johannsen, T. Kötzing, P.K. Lehre, M. Wagner, C. Winzen, Faster black-box algorithms through higher arity operators, in 11th ACM SIGEVO Workshop on Foundations of Genetic Algorithms (FOGA 2011), Schwarzenberg, ed. by H.-G. Beyer, W.B. Langdon (ACM, New York, 2011), pp. 163–172

    Google Scholar 

  7. S. Droste, T. Jansen, I. Wegener, Perhaps not a free lunch but at least a free appetizer, in Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 1999), Orlando (Springer, Berlin, 1999), pp. 833–839

    Google Scholar 

  8. S. Droste, T. Jansen, I. Wegener, Optimization with randomized search heuristics – the (A)NFL theorem, realistic scenarios, and difficult functions. Theor. Comput. Sci. 287(1), 131–144 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. S. Droste, T. Jansen, K. Tinnefeld, I. Wegener, A new framework for the valuation of algorithms for black-box optimization, in Foundations of Genetic Algorithms 7 (FOGA), Torremolinos, ed. by K.A. De Jong, R. Poli, J.E. Rowe (Morgan Kaufmann, San Francisco, 2003), pp. 253–270

    Google Scholar 

  10. S. Droste, T. Jansen, I. Wegener, Upper and lower bounds for randomized search heuristics in black-box optimization. Theory Comput. Syst. 39(4), 525–544 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. E.A. Duéñez-Guzán, M.D. Vose, No free lunch and benchmarks. Evol. Comput. (2013). doi:10.1162/EVCO_a_00077

    Google Scholar 

  12. C. Igel, M. Toussaint, On classes of functions for which no free lunch results hold. Inf. Process. Lett. 86(6), 317–321 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. C. Igel, M. Toussaint, A no-free-lunch theorem for non-uniform distributions of target functions. J. Math. Model. Algorithms 3(4), 313–322 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. W.B. Langdon, R. Poli, Foundations of Genetic Programming (Springer, Berlin, 2002)

    Book  MATH  Google Scholar 

  15. P.K. Lehre, C. Witt, Black box search by unbiased variation, in Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2010), Portland (ACM, New York, 2010), pp. 1441–1448

    Google Scholar 

  16. J.E. Rowe, M.D. Vose, A.H. Wright, Reinterpreting the no free lunch. Evol. Comput. 17(1), 117–129 (2009)

    Article  Google Scholar 

  17. C. Schumacher, M.D. Vose, L.D. Whitley, The no free lunch and problem description length, in Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2001), San Francisco (Morgan Kaufmann, San Francisco, 2001), pp. 565–570

    Google Scholar 

  18. A. Valsecchi, L. Vanneschi, G. Mauri, Optimisation speed and fair sets of functions, in Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2010), Portland (ACM, New York, 2010), pp. 1475–1476

    Google Scholar 

  19. I. Wegener, Complexity Theory: Exploring the Limits of Efficient Algorithms (Springer, Berlin, 2005)

    MATH  Google Scholar 

  20. D.H. Wolpert, W.G. Macready, No free lunch theorems for search. Technical report SFI-TR-9502-010, Santa Fe Institute, 1995

    Google Scholar 

  21. D.H. Wolpert, W.G. Macready, No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1(1), 67–82 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jansen, T. (2013). General Limits in Black-Box Optimization. In: Analyzing Evolutionary Algorithms. Natural Computing Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17339-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17339-4_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17338-7

  • Online ISBN: 978-3-642-17339-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics