[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Evolutionary Algorithms and Other Randomized Search Heuristics

  • Chapter
  • First Online:
Analyzing Evolutionary Algorithms

Part of the book series: Natural Computing Series ((NCS))

  • 2263 Accesses

Abstract

In our description of evolutionary algorithms we make use of terms that stem from biology, hinting at the roots of evolutionary algorithms. We adhere to these standard notions as long as they do not collide with standard notions in computer science. Evolutionary algorithms are structurally very simple. They work in rounds that are called generations. Evolutionary algorithms operate on some search spaceS, where S is a set. Points are assigned some quality via a function f.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E. Aarts, J. Korst, Simulated Annealing and Boltzmann Machines: A Stochastic Approach to Combinatorial Optimization and Neural Computing (Wiley, New York, 1998)

    Google Scholar 

  2. E. Aarts, J.K. Lenstra (eds.), Local Search in Combinatorial Optimization (Princeton University Press, Princeton, 2003)

    MATH  Google Scholar 

  3. T. Bäck, An overview of parameter control methods by self-adaptation in evolutionary algorithms. Fundam. Inform. 35(1–4), 51–66 (1998)

    MATH  Google Scholar 

  4. T. Bäck, D.B. Fogel, Z. Michalewicz (eds.), Handbook of Evolutionary Computation (IOP Publishing/Oxford University Press, Bristol/Oxford, 1997)

    MATH  Google Scholar 

  5. T. Bartz-Beielstein, Experimental Research in Evolutionary Computation: The New Experimentalism (Springer, Berlin, 2006)

    MATH  Google Scholar 

  6. T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction to Algorithms, 2nd edn. (MIT, Cambridge, 2001)

    MATH  Google Scholar 

  7. S. Droste, D. Wiesmann, On the design of problem-specific evolutionary algorithms, in Advances in Evolutionary Computing, ed. by A. Ghosh, S. Tsutsui (Springer, Berlin, 2003), pp. 153–173

    Chapter  Google Scholar 

  8. A. Eiben, R. Hinterding, Z. Michalewicz, Parameter control in evolutionary algorithms. IEEE Trans. Evol. Comput. 3(2), 124–141 (1999)

    Article  Google Scholar 

  9. L.J. Fogel, A.J. Owens, M.J. Walsh, Artificial Intelligence Through Simulated Evolution (Wiley, New York, 1966)

    MATH  Google Scholar 

  10. D.E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning (Addison-Wesley, Reading, 1989)

    MATH  Google Scholar 

  11. J. Holland, Adaptation in Natural and Artificial Systems (University of Michigan Press, Ann Arbor, 1975)

    Google Scholar 

  12. T. Jansen, Simulated annealing, in Theory of Randomized Search Heuristics, ed. by A. Auger, B. Doerr (World Scientific, Singapore, 2011), pp. 171–196

    Chapter  Google Scholar 

  13. T. Jansen, I. Wegener, A comparison of simulated annealing with simple evolutionary algorithms on pseudo-Boolean functions of unitation. Theor. Comput. Sci. 386, 73–93 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  15. J.R. Koza, Genetic Programming: On the Programming of Computers by Means of Natural Selection (MIT, Cambridge, 1992)

    MATH  Google Scholar 

  16. J.R. Koza, Genetic Programming II: Automatic Discovery of Resuable Programs (MIT, Cambridge, 1994)

    Google Scholar 

  17. J.R. Koza, F.H. Bennett III, D. Andre, M.A. Keane, Genetic Programming III: Darwinian Invention and Problem Solving (Morgan Kaufmann, San Francisco, 1999)

    MATH  Google Scholar 

  18. J.R. Koza, M.A. Keane, M.J. Streeter, W. Mydlowec, J. Yu, G. Lanza, Genetic Programming IV: Routine Human-Competitive Machine Intelligence (Kluwer Academic, New York, 2003)

    MATH  Google Scholar 

  19. N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, E. Teller, Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1092 (1953)

    Article  Google Scholar 

  20. W. Michiels, E. Aarts, J. Korst, Theoretical Aspects of Local Search (Springer, Berlin, 2007)

    MATH  Google Scholar 

  21. R. Motwani, P. Raghavan, Randomized Algorithms (Cambridge University Press, Cambridge, 1995)

    MATH  Google Scholar 

  22. R. Poli, Tournament selection, iterated coupon-collection problem, and backward-chaining evolutionary algorithms, in Foundations of Genetic Algorithms (FOGA 2005), Aizu-Wakamatsu, ed. by A.H. Wright, M.D. Vose, K.A. De Jong, L.M. Schmitt. Lecture Notes in Computer Science, vol. 3469 (Springer, Berlin, 2005), pp. 132–155

    Google Scholar 

  23. I. Rechenberg, Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der Evolution (Frommann-Holzboog, Stuttgart-Bad Cannstatt, 1973)

    Google Scholar 

  24. G. Rozenberg, T. Bäck, J.N. Kok (eds.), Handbook of Natural Computing (Springer, Berlin, 2012)

    MATH  Google Scholar 

  25. H.-P. Schwefel, Evolution and Optimum Seeking (Wiley, New York, 1995)

    Google Scholar 

  26. M.D. Vose, The Simple Genetic Algorithm: Foundations and Theory (MIT, Cambridge, 1999)

    MATH  Google Scholar 

  27. I. Wegener, J. Scharnow, K. Tinnefeld, The analysis of evolutionary algorithms on sorting and shortest paths problems. J. Math. Model. Algorithms 3, 349–366 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jansen, T. (2013). Evolutionary Algorithms and Other Randomized Search Heuristics. In: Analyzing Evolutionary Algorithms. Natural Computing Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17339-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17339-4_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17338-7

  • Online ISBN: 978-3-642-17339-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics