Abstract
Spatial information may be endowed with a bipolarity component. Typical examples concern possible vs forbidden places for an object in space, or “opposite” spatial relations such as “possibly to the right of an object and certainly not to its left”. However, bipolarity has not been much exploited in the spatial domain yet. Moreover, imprecision has often to be taken into account as well, for instance to model vague statements such as “to the right of an object”. In this paper we propose to handle both features in the framework of bipolar fuzzy sets. We introduce some geometrical measures and mathematical morphology operations on bipolar fuzzy sets and illustrate their potential for spatial reasoning on a simple scenario in brain imaging.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Amgoud, L., Cayrol, C., Lagasquie-Schiez, M.C., Livet, P.: On bipolarity in argumentation frameworks. International Journal of Intelligent Systems 23(10), 1062–1093 (2008)
Atanassov, K.T.: Intuitionistic Fuzzy Sets. Fuzzy Sets and Systems 20, 87–96 (1986)
Atanassov, K.T.: Answer to D. Dubois, S. Gottwald, P. Hajek, J. Kacprzyk and H. Prade’s Paper Terminology Difficulties in Fuzzy Set Theory – The Case of “Intuitionistic Fuzzy Sets” Fuzzy Sets and Systems 156, 496–499 (2005)
Benferhat, S., Dubois, D., Kaci, S., Prade, H.: Bipolar Possibility Theory in Preference Modeling: Representation, Fusion and Optimal Solutions. Information Fusion 7, 135–150 (2006)
Benferhat, S., Dubois, D., Prade, H.: Modeling positive and negative information in possibility theory. International Journal of Intelligent Systems 23(10), 1094–1118 (2008)
Bloch, I.: Fuzzy Relative Position between Objects in Image Processing: a Morphological Approach. IEEE Transactions on Pattern Analysis and Machine Intelligence 21(7), 657–664 (1999)
Bloch, I.: On Fuzzy Distances and their Use in Image Processing under Imprecision. Pattern Recognition 32(11), 1873–1895 (1999)
Bloch, I.: Spatial Representation of Spatial Relationships Knowledge. In: Cohn, A.G., Giunchiglia, F., Selman, B. (eds.) 7th International Conference on Principles of Knowledge Representation and Reasoning KR 2000, Breckenridge, CO, pp. 247–258. Morgan Kaufmann, San Francisco (2000)
Bloch, I.: Duality vs Adjunction and General Form for Fuzzy Mathematical Morphology. In: Bloch, I., Petrosino, A., Tettamanzi, A.G.B. (eds.) WILF 2005. LNCS (LNAI), vol. 3849, pp. 354–361. Springer, Heidelberg (2006)
Bloch, I.: Fuzzy Spatial Relationships for Image Processing and Interpretation: A Review. Image and Vision Computing 23(2), 89–110 (2005)
Bloch, I.: Spatial Reasoning under Imprecision using Fuzzy Set Theory, Formal Logics and Mathematical Morphology. International Journal of Approximate Reasoning 41, 77–95 (2006)
Bloch, I.: Dilation and Erosion of Spatial Bipolar Fuzzy Sets. In: Masulli, F., Mitra, S., Pasi, G. (eds.) WILF 2007. LNCS (LNAI), vol. 4578, pp. 385–393. Springer, Heidelberg (2007)
Bloch, I.: An Extension of Skeleton by Influence Zones and Morphological Interpolation to Fuzzy Sets. In: International Symposium on Mathematical Morphology (ISMM 2007), Rio de Janeiro, Brazil, October 2007, pp. 3–14 (2007)
Bloch, I.: A Contribution to the Representation and Manipulation of Fuzzy Bipolar Spatial Information: Geometry and Morphology. In: Workshop on Soft Methods in Statistical and Fuzzy Spatial Information, Toulouse, France, September 2008, pp. 7–25 (2008)
Bloch, I.: Bipolar Fuzzy Mathematical Morphology for Spatial Reasoning. In: International Symposium on Mathematical Morphology ISMM 2009, Groningen, The Netherlands, vol. 5720, pp. 24–34 (August 2009)
Bloch, I.: Duality vs. Adjunction for Fuzzy Mathematical Morphology and General Form of Fuzzy Erosions and Dilations. Fuzzy Sets and Systems 160, 1858–1867 (2009)
Bloch, I.: Geometry of Spatial Bipolar Fuzzy Sets based on Bipolar Fuzzy Numbers and Mathematical Morphology. In: Di Gesù, V., Pal, S.K., Petrosino, A. (eds.) Fuzzy Logic and Applications. LNCS (LNAI), vol. 5571, pp. 237–245. Springer, Heidelberg (2009)
Bloch, I., Géraud, T., Maître, H.: Representation and Fusion of Heterogeneous Fuzzy Information in the 3D Space for Model-Based Structural Recognition - Application to 3D Brain Imaging. Artificial Intelligence 148, 141–175 (2003)
Bloch, I., Heijmans, H., Ronse, C.: Mathematical Morphology. In: Aiello, M., Pratt-Hartman, I., van Benthem, J. (eds.) Handbook of Spatial Logics, ch. 13, pp. 857–947. Springer, Heidelberg (2007)
Bloch, I., Maître, H.: Fuzzy Mathematical Morphologies: A Comparative Study. Pattern Recognition 28(9), 1341–1387 (1995)
Bonnefon, J.F.: Two routes for bipolar information processing, and a blind spot in between. International Journal of Intelligent Systems 23(9), 923–929 (2008)
Bustince, H., Burillo, P.: Vague Sets are Intuitionistic Fuzzy Sets. Fuzzy Sets and Systems 79, 403–405 (1996)
Caferra, R., Peltier, N.: Accepting/rejecting propositions from accepted/rejected propositions: A unifying overview. International Journal of Intelligent Systems 23(10), 999–1020 (2008)
Chaira, T., Ray, A.K.: A New Measure using Intuitionistic Fuzzy Set Theory and its Application to Edge Detection. Applied Soft Computing Journal 8(2), 919–927 (2008)
Charlier, N., De Tré, G., Gautama, S., Bellens, R.: A Twofold Fuzzy Region Model for Imprecise Quality Control of Geographic Information. In: Gervasi, O., Murgante, B., Laganà, A., Taniar, D., Mun, Y., Gavrilova, M.L. (eds.) ICCSA 2008, Part I. LNCS, vol. 5072, pp. 647–662. Springer, Heidelberg (2008)
Colliot, O., Camara, O., Bloch, I.: Integration of Fuzzy Spatial Relations in Deformable Models - Application to Brain MRI Segmentation. Pattern Recognition 39, 1401–1414 (2006)
Cornelis, C., Deschrijver, G., Kerre, E.: Implication in Intuitionistic Fuzzy and Interval-Valued Fuzzy Set Theory: Construction, Classification, Application. International Journal of Approximate Reasoning 35, 55–95 (2004)
Cornelis, C., Kerre, E.: Inclusion Measures in Intuitionistic Fuzzy Sets. In: Nielsen, T.D., Zhang, N.L. (eds.) ECSQARU 2003. LNCS (LNAI), vol. 2711, pp. 345–356. Springer, Heidelberg (2003)
Couto, P., Bustince, H., Melo-Pinto, P., Pagola, M., Barrenechea, E.: Image Segmentation using A-IFSs. In: IPMU 2008, Malaga, Spain, pp. 1620–1627 (2008)
De Baets, B.: Generalized Idempotence in Fuzzy Mathematical Morphology. In: Kerre, E., Nachtegael, M. (eds.) Fuzzy Techniques in Image Processing. Studies in Fuzziness and Soft Computing, vol. 52, pp. 58–75. Physica Verlag, Springer (2000)
Deng, T.-Q., Heijmans, H.: Grey-Scale Morphology Based on Fuzzy Logic. Journal of Mathematical Imaging and Vision 16, 155–171 (2002)
Deschrijver, G., Cornelis, C., Kerre, E.: On the Representation of Intuitionistic Fuzzy t-Norms and t-Conorms. IEEE Transactions on Fuzzy Systems 12(1), 45–61 (2004)
Dubois, D., Gottwald, S., Hajek, P., Kacprzyk, J., Prade, H.: Terminology Difficulties in Fuzzy Set Theory – The Case of “Intuitionistic Fuzzy Sets”. Fuzzy Sets and Systems 156, 485–491 (2005)
Dubois, D., Kaci, S., Prade, H.: Bipolarity in Reasoning and Decision, an Introduction. In: International Conference on Information Processing and Management of Uncertainty, IPMU 2004, Perugia, Italy, pp. 959–966 (2004)
Dubois, D., Prade, H.: Fuzzy Sets and Systems: Theory and Applications. Academic Press, New-York (1980)
Dubois, D., Prade, H.: A Bipolar Possibilistic Representation of Knowledge and Preferences and Its Applications. In: Bloch, I., Petrosino, A., Tettamanzi, A.G.B. (eds.) WILF 2005. LNCS (LNAI), vol. 3849, pp. 1–10. Springer, Heidelberg (2006)
Dubois, D., Prade, H.: An introduction to bipolar representations of information and preference. International Journal of Intelligent Systems 23(8), 865–866 (2008)
Grabisch, M., Greco, S., Pirlot, M.: Bipolar and bivariate models in multicriteria decision analysis: Descriptive and constructive approaches. International Journal of Intelligent Systems 23(9), 930–969 (2008)
Heijmans, H.J.A.M., Ronse, C.: The Algebraic Basis of Mathematical Morphology – Part I: Dilations and Erosions. Computer Vision, Graphics and Image Processing 50, 245–295 (1990)
Hong, D.H., Lee, S.: Some Algebraic Properties and a Distance Measure for Interval-Valued Fuzzy Numbers. Information Sciences 148(1-4), 1–10 (2002)
Hudelot, C., Atif, J., Bloch, I.: Fuzzy Spatial Relation Ontology for Image Interpretation. Fuzzy Sets and Systems 159, 1929–1951 (2008)
Kaci, S.: Logical formalisms for representing bipolar preferences. International Journal of Intelligent Systems 23(8), 985–997 (2008)
Konieczny, S., Marquis, P., Besnard, P.: Bipolarity in bilattice logics. International Journal of Intelligent Systems 23(10), 1046–1061 (2008)
Malek, M.R.: Spatial Object Modeling in Intuitionistic Fuzzy Topological Spaces. In: Tsumoto, S., Słowiński, R., Komorowski, J., Grzymała-Busse, J.W. (eds.) RSCTC 2004. LNCS (LNAI), vol. 3066, pp. 427–434. Springer, Heidelberg (2004)
Malek, M.R.: Intuitionistic Fuzzy Spatial Relationships in Mobile GIS Environment. In: Masulli, F., Mitra, S., Pasi, G. (eds.) WILF 2007. LNCS (LNAI), vol. 4578, pp. 313–320. Springer, Heidelberg (2007)
Maragos, P.: Lattice Image Processing: A Unification of Morphological and Fuzzy Algebraic Systems. Journal of Mathematical Imaging and Vision 22, 333–353 (2005)
Nachtegael, M., Kerre, E.E.: Classical and Fuzzy Approaches towards Mathematical Morphology. In: Kerre, E.E., Nachtegael, M. (eds.) Fuzzy Techniques in Image Processing, Studies in Fuzziness and Soft Computing, ch. 1, pp. 3–57. Physica-Verlag, Springer (2000)
Nachtegael, M., Sussner, P., Mélange, T., Kerre, E.: Some Aspects of Interval-Valued and Intuitionistic Fuzzy Mathematical Morphology. In: IPCV 2008 (2008)
Da Silva Neves, R., Livet, P.: Bipolarity in human reasoning and affective decision making. International Journal of Intelligent Systems 23(8), 898–922 (2008)
Öztürk, M., Tsoukias, A.: Bipolar preference modeling and aggregation in decision support. International Journal of Intelligent Systems 23(9), 970–984 (2008)
Raufaste, E., Vautier, S.: An evolutionist approach to information bipolarity: Representations and affects in human cognition. International Journal of Intelligent Systems 23(8), 878–897 (2008)
Serra, J.: Image Analysis and Mathematical Morphology. Academic Press, London (1982)
Sinha, D., Dougherty, E.R.: Fuzzification of Set Inclusion: Theory and Applications. Fuzzy Sets and Systems 55, 15–42 (1993)
Soille, P.: Morphological Image Analysis. Springer, Berlin (1999)
Szmidt, E., Kacprzyk, J.: Distances between Intuitionistic Fuzzy Sets. Fuzzy Sets and Systems 114(3), 505–518 (2000)
Szmidt, E., Kacprzyk, J.: Entropy for Intuitionistic Fuzzy Sets. Fuzzy Sets and Systems 118(3), 467–477 (2001)
Vlachos, I.K., Sergiadis, G.D.: Intuitionistic Fuzzy Information – Applications to Pattern Recognition. Pattern Recognition Letters 28(2), 197–206 (2007)
Wang, G., Li, X.: The Applications of Interval-Valued Fuzzy Numbers and Interval-Distribution Numbers. Fuzzy Sets and Systems 98(3), 331–335 (1998)
Waxman, S.G.: Correlative Neuroanatomy, 24th edn. McGraw-Hill, New York (2000)
Zadeh, L.A.: The Concept of a Linguistic Variable and its Application to Approximate Reasoning. Information Sciences 8, 199–249 (1975)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Bloch, I. (2010). Bipolar Fuzzy Spatial Information: Geometry, Morphology, Spatial Reasoning. In: Jeansoulin, R., Papini, O., Prade, H., Schockaert, S. (eds) Methods for Handling Imperfect Spatial Information. Studies in Fuzziness and Soft Computing, vol 256. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14755-5_4
Download citation
DOI: https://doi.org/10.1007/978-3-642-14755-5_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-14754-8
Online ISBN: 978-3-642-14755-5
eBook Packages: EngineeringEngineering (R0)