Abstract
The augmented Lagrangian and Generalized Newton methods are used to simultaneously solve the primal and dual linear programming (LP) problems. We propose parallel implementation of the method to solve the primal linear programming problem with very large number (≈ 2 ·106) of nonnegative variables and a large (≈ 2 ·105) number of equality type constraints.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Golikov, A.I., Evtushenko, Yu.G.: Solution Method for Large-Scale Linear Programming Problems. Doklady Mathematics 70(1), 615–619 (2004)
Evtushenko, Yu.G., Golikov, A.I., Mollaverdi, N.: Augmented Lagrangian method for large-scale linear programming problems. Optim. Methods and Software 7(4-5), 515–524 (2005)
Mangasarian, O.L.: A Newton Method for Linear Programming. Jour. of Optim. Theory and Appl. 121, 1–18 (2004)
Golikov, A.I., Evtushenko, Yu.G.: Search for Normal Solutions in Linear Programming Problems. Comput. Math. and Math. Phys. 40, 1694–1714 (2000)
Karypis, G., Gupta, A., Kumar, V.: A parallel formulation of interior point algorithms. In: Proceedings of Supercomputing, pp. 204–213 (1994)
Coleman, T.F., Czyzyk, J., Sun, C., Wagner, M., Wright, S.J.: pPCx: Parallel Software for Linear Programming. In: Proceedings of the Eighth SIAM Conference on Parallel Processing for Scientific Computing, PPSC 1997, Hyatt Regency Minneapolis on Nicollel Mall Hotel, Minneapolis, Minnesota, USA, March 14-17. SIAM, Philadelphia (1997)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Evtushenko, Y.G., Garanzha, V.A., Golikov, A.I., Nguyen, H.M. (2009). Parallel Implementation of Generalized Newton Method for Solving Large-Scale LP Problems. In: Malyshkin, V. (eds) Parallel Computing Technologies. PaCT 2009. Lecture Notes in Computer Science, vol 5698. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03275-2_9
Download citation
DOI: https://doi.org/10.1007/978-3-642-03275-2_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-03274-5
Online ISBN: 978-3-642-03275-2
eBook Packages: Computer ScienceComputer Science (R0)