Abstract
We have extracted brain functional networks from fMRI data based on temporal correlations of voxel activities during the rest and task periods. The goal of our preliminary research was to study the topology of these networks in terms of small-world and scale-free properties. The small-world property was quite clearly evident whereas the scale-free character was less obvious, especially in the rest condition. In addition, there were some differences between the rest and task functional brain networks as well as between subjects. We discuss the relation of properties of functional brain networks to the topological properties of the underlying anatomical networks, which are largely dependent upon genetic instructions during brain development.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Functional magnetic resonanse imaging (fMRI), http://en.wikipedia.org/wiki/FMRI
Chialvo, D.R.: Critical brain networks. Physica A 340(4), 756 (2004)
Eguíluz, V., Chialvo, D.R., Cecchi, G.A., Baliki, M., Apkarian, A.V.: Scale-free brain functional networks. Phys. Rev. Letters 92, 018102 (2005)
Barabási, A.L., Albert, R.: Emergence of scaling in random network. Science 286, 509 (1999)
Dorogovtsev, S.N., Mendes, J.F.F.: Evolution of networks. Adv. Phys. 51, 1079 (2002)
Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Rev. Modern Phys. 74, 47 (2002)
Watts, D.J.: Small Worlds. Princetom University Press, Princeton (2004)
van den Heuvel, M.P., Stam, C.J., Boersma, M., Hulshoff Pol, H.E.: Small-world and scale-free organization of voxel-based resting-state functional connectivity in the human brain. NeuroImage (2005), doi:10.1016/j.neuroimage.2008.08.010
NWB Team, Network Workbench Tool, Indiana University, Northeastern University and University of Michigan, http://nwb.slis.indiana.edu
Humphries, M.D., Gurney, K., Prescott, T.J.: The brainstem reticular formation is a small-world, not scale-free, network. Proc. Biol. Sci. 273, 503–511 (2006)
Hagmann, P., Kurant, M., Gigandet, X., Thiran, P., Van Wedeen, J., Meuli, R., Thiran, J.-P.: Mapping human whole-brain structural networks with diffusion MRI. PLoS ONE 2(7), e597, doi:10.1371/journal.pone.0000597
Sporns, O., Chialvo, D., Kaiser, M., Hilgetag, C.C.: Organization, development and function of complex brain networks. Trends Cog. Sci. 8, 1364–6613 (2004)
Markošová, M.: Network model of human language. Physica A 387, 661 (2008)
Kaiser, M., Hilgetag, C.C.: Modelling the development of cortical systems networks. Neurocomputing 58-60, 297–302 (2004)
Amaral, L., Scala, A., Barthelemy, M., Stanley, H.: Classes of small-world networks. Proc. Natl. Acad. Sci. USA 97, 11149–11152 (2000)
Molnár, Z., Hoerder-Suabedissen, A., Wang, W.Z., DeProto, J., Davies, K., Lee, S., Jacobs, E.C., Campagnoni, A.T., Paulsen, O.: Genes involved in the formation of the earliest cortical circuits. In: Novartis Found Symp., vol. 288, pp. 212–224 (2007)
Benuskova, L., Kasabov, N.: Computational Neurogenetic Modeling. Springer, New York (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Markošová, M., Franz, L., Beňušková, Ľ. (2009). Topology of Brain Functional Networks: Towards the Role of Genes. In: Köppen, M., Kasabov, N., Coghill, G. (eds) Advances in Neuro-Information Processing. ICONIP 2008. Lecture Notes in Computer Science, vol 5506. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02490-0_14
Download citation
DOI: https://doi.org/10.1007/978-3-642-02490-0_14
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02489-4
Online ISBN: 978-3-642-02490-0
eBook Packages: Computer ScienceComputer Science (R0)