Abstract
This paper describes a process of rule-extraction from a multi-centre brain tumour database consisting of nuclear magnetic resonance spectroscopic signals. The expert diagnosis of human brain tumours can benefit from computer-aided assistance, which has to be readily interpretable by clinicians. Interpretation can be achieved through rule extraction, which is here performed using the LR-FIR algorithm, a method based on fuzzy logic. The experimental results of the classification of three groups of tumours indicate in this study that just three spectral frequencies, out of the 195 from a range pre-selected by experts, are enough to represent, in a simple and intuitive manner, most of the knowledge required to discriminate these groups.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Garg, A.X., Adhikari, N.K.J., McDonald, H., Rosas-Arellano, M.P., Devereaux, P.J., Beyene, J., Sam, J., Haynes, R.B.: Effects of Computerized Clinical Decision Support Systems on Practitioner Performance and Patient Outcomes: A Systematic Review. J. Amer. Med. Assoc. 293, 1223–1238 (2005)
Tung, W.L., Quek, C.: GenSo-FDSS: a Neural-Fuzzy Decision Support System for Pediatric ALL Cancer Subtype Identification Using Gene Expression Data. Artif. Intell. Med. 33, 61–88 (2005)
Mitra, S.: Computational Intelligence in Bioinformatics. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets III. LNCS, vol. 3400, pp. 134–152. Springer, Heidelberg (2005)
Vellido, A., Lisboa, P.J.G.: Neural Networks and Other Machine Learning Methods in Cancer Research. In: Sandoval, F., Gonzalez Prieto, A., Cabestany, J., Graña, M. (eds.) IWANN 2007. LNCS, vol. 4507, pp. 964–971. Springer, Heidelberg (2007)
Futschik, M.E., Reeve, A., Kasabov, N.: Evolving Connectionist Systems for Knowledge Discovery from Gene Expression Data of Cancer Tissue. Artif. Intell. Med. 28, 165–189 (2003)
Chen, Z., Lia, J., Wei, L.: A Multiple Kernel Support Vector Machine Scheme for Feature Selection and Rule Extraction from Gene Expression Data of Cancer Tissue. Artif. Intell. Med. 41, 161–175 (2007)
Peña-Reyes, C.A., Sipper, M.: A Fuzzy-Genetic Approach to Breast Cancer Diagnosis. Artif. Intell. Med. 17, 131–155 (1999)
Takahashi, H., Masuda, K., Ando, T., Kobayashi, T., Honda, H.: Prognostic Predictor with Multiple Fuzzy Neural Models Using Expression Profiles from DNA Microarray for Metastases of Breast Cancer. J. Biosci. Bioeng. 98, 193–199 (2004)
Hassanien, A.E.: Fuzzy Rough Sets Hybrid Scheme for Breast Cancer Detection. Image Vision Comput. 25, 172–183 (2007)
Artificial Intelligence Decision Tools for Tumour diagnosis (AIDTumour) research project, http://www.lsi.upc.edu/~websoco/AIDTumour
Julià-Sapé, M., et al.: A Multi-Centre, Web-Accessible and Quality Control-Checked Database of in Vivo MR Spectra of Brain Tumour Patients. Magn. Reson. Mater. Phy. MAGMA 19, 22–33 (2006)
Castro, F., Nebot, A.: Un Algoritmo para la Extracción Automática de Reglas Lógicas a partir de Modelos FIR. Technical Report, Universitat Politècnica de Catalunya LSI-07-7-R (2007)
Nebot, A., Cellier, F.E., Vallverdú, M.: Mixed Quantitative:Qualitative Modeling and Simulation of the Cardiovascular System. Comput. Meth. Prog. Bio. 55, 127–155 (1998)
Escobet, A., Nebot, A., Cellier, F.E.: Visual-FIR: A Tool for Model Identification and Prediction of Dynamical Complex Systems. Simul. Model. Pract. Th. 16, 76–92 (2008)
Vellido, A., Biganzoli, E., Lisboa, P.J.G.: Machine Learning in Cancer Research: Implications for Personalised Medicine. In: 16th European Symposium on Artificial Neural Networks (ESANN 2008). d-Side pub, Evere, Belgium (2008) (in press)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Nebot, À., Castro, F., Vellido, A., Julià-Sapé, M., Arús, C. (2008). Rule-Based Assistance to Brain Tumour Diagnosis Using LR-FIR. In: Lovrek, I., Howlett, R.J., Jain, L.C. (eds) Knowledge-Based Intelligent Information and Engineering Systems. KES 2008. Lecture Notes in Computer Science(), vol 5178. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85565-1_22
Download citation
DOI: https://doi.org/10.1007/978-3-540-85565-1_22
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-85564-4
Online ISBN: 978-3-540-85565-1
eBook Packages: Computer ScienceComputer Science (R0)