Abstract
Off-pump Coronary Artery Bypass Grafting (CABG) is still today a technically difficult procedure. In fact, the mechanical stabilizers used to locally suppress the heart excursion have been demonstrated to exhibit significant residual motion. We therefore propose a novel active stabilizer which is able to compensate for this residual motion. The interaction between the heart and a mechanical stabilizer is first assessed in vivo on an animal model. Then, the principle of active stabilization, based on the high speed vision-based control of a compliant mechanism, is presented. In vivo experimental results are given using a prototype which structure is compatible with a minimally invasive approach.
Chapter PDF
Similar content being viewed by others
Keywords
- Coronary Artery Bypass Grafting
- Minimally Invasive Surgery
- Model Predictive Control
- Active Stabilization
- Residual Motion
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Lemma, M., Mangini, A., Redaelli, A., Acocella, F.: Do cardiac stabilizers really stabilize? experimental quantitative analysis of mechanical stabilization. Interactive Cardiovascular and Thoracic Surgery (2005)
Cattin, P., Dave, H., Grunenfelder, J., Szekely, G., Turina, M., Zund, G.: Trajectory of coronary motion and its significance in robotic motion cancellation. European Journal of Cardio-thoracic Surgery 25 (2004)
Loisance, D., Nakashima, K., Kirsch, M.: Computer-assisted coronary surgery: lessons from an initial experience. Interactive Cardiovascular and Thoracic Surgery (2005)
Gilhuly, T., Salcudean, S., Ashe, K., Lichtenstein, S., Lawrence, P.: Stabilizer and surgical arm design for cardiac surgery. In: IEEE Int. Conf. on Robotics and Automation - ICRA (1998)
Thakral, A., Wallace, J., Tolmin, D., Seth, N., Thakor, N.: Surgical motion adaptive robotic technology (s.m.a.r.t): Taking the motion out of physiological motion. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, Springer, Heidelberg (2001)
Nakamura, Y., Kishi, K., Kawakami, H.: Heartbeat synchronization for robotic cardiac surgery. In: IEEE Int. Conf. on Robotics and Automation - ICRA 2 (2001)
Ginhoux, R., Gangloff, J., de Mathelin, M., Soler, L., Sanchez, M., Marescaux, J.: Beating heart tracking in robotic surgery using 500 hz visual servoing, model predictive control and an adaptive observer. In: IEEE Int. Conf. on Robotics and Automation - ICRA (2004)
Bebek, O., Cavusoglo, M.: Predictive control algorithms using biological signals for active relative motion canceling in robotic assisted heart surgery. In: IEEE Int. Conf. on Robotics and Automation - ICRA (2006)
Shechter, G., Resar, J., McVeigh, E.: Displacement and velocity of the coronary arteries: cardiac and respiratory motion. IEEE trans. on medical imaging (2006)
Cuvillon, L., Gangloff, J., de Mathelin, M., Forgione, A.: Toward robotized beating heart tecabg: assessment of the heart dynamics using high-speed vision. In: Int. Conf. on Medical Image Computing and Computer-Assisted Intervention (2005)
Bachta, W., Renaud, P., Laroche, E., Forgione, A., Gangloff, J.: Design and control of a new active cardiac stabilizer. In: IEEE/RSJ Int. Conf. on Intelligent Robots and Systems - IROS (2007)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bachta, W., Renaud, P., Laroche, E., Gangloff, J., Forgione, A. (2007). Cardiolock: An Active Cardiac Stabilizer. In: Ayache, N., Ourselin, S., Maeder, A. (eds) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2007. MICCAI 2007. Lecture Notes in Computer Science, vol 4791. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75757-3_10
Download citation
DOI: https://doi.org/10.1007/978-3-540-75757-3_10
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-75756-6
Online ISBN: 978-3-540-75757-3
eBook Packages: Computer ScienceComputer Science (R0)