[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Abstract

Theoretical models for the evaluation of quickly improving search strategies, like limited discrepancy search, are based on specific assumptions regarding the probability that a value selection heuristic makes a correct prediction. We provide an extensive empirical evaluation of value selection heuristics for knapsack problems. We investigate how the accuracy of search heuristics varies as a function of depth in the search-tree, and how the accuracies of heuristic predictions are affected by the relative strength of inference methods like pruning and constraint propagation.

This work was supported by the National Science Foundation through the Career: Cornflower Project (award number 0644113).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Balas, E., Carrera, M.: A dynamic subgradient-based branch-and-bound procedure for set covering. Operations Research 44, 875–890 (1996)

    MATH  MathSciNet  Google Scholar 

  2. Beacham, A., Chen, X., Sillito, J., van Beek, P.: Constraint Programming Lessons Learned from Crossword Puzzles. In: Canadian Conference on AI, pp. 78–87 (2001)

    Google Scholar 

  3. Cooper, M.C.: An Optimal k-Consistency Algorithm. AI 41, 89–95 (1989)

    MATH  Google Scholar 

  4. Crowder, H., Johnson, E., Padberg, M.: Solving large scale zero-one linear programming problem. Operations Research 31, 803–834 (1983)

    Article  MATH  Google Scholar 

  5. Dantzig, G.: Discrete variable extremum problems. Operations Research 5, 226–277 (1957)

    MathSciNet  Google Scholar 

  6. Fahle, T., Sellman, M.: Cost-Based Filtering for the Constrained Knapsack Problem. AOR 115, 73–93 (2002)

    Article  MATH  Google Scholar 

  7. Focacci, F., Lodi, A., Milano, M.: Cutting Planes in Constraint Programming. In: CP-AI-OR, pp. 45–51 (2000)

    Google Scholar 

  8. Freuder, E.: Backtrack-Free and Backtrack-Bounded Search. In: Search in Artificial Intelligence, pp. 343–369 (1988)

    Google Scholar 

  9. Garey, M.R., Johnson, D.S.: Computers and Intractability (1979)

    Google Scholar 

  10. Gomes, C., van Hoeve, W., Leahu, L.: The Power of Semidefinite Programming Relaxations for MAXSAT. In: Beck, J.C., Smith, B.M. (eds.) CPAIOR 2006. LNCS, vol. 3990, Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  11. Gomory, R.E.: Outline of an algorithm for integer solutions to linear programs. American Mathematical Society 64, 275–278 (1958)

    Article  MATH  MathSciNet  Google Scholar 

  12. Harvey, W.D., Ginsberg, M.L.: Limited discrepancy search. IJCAI, 607–613 (1997)

    Google Scholar 

  13. Hooker, J.N.: A search-infer-and-relax framework for integrating solution methods. In: CPAIOR, pp. 243–257 (2005)

    Google Scholar 

  14. Martello, S., Pisinger, D., Toth, P.: Dynamic programming and tight bounds for the 0-1 knapsack problem. Management Science 45, 414–424 (1999)

    Google Scholar 

  15. Pisinger, D.: Where are the hard knapsack problems? Computers and Operations Research 32(9), 2271–2284 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  16. Sandholm, T., Suri, S., Gilpin, A., Levine, D.: CABOP: A Fast Optimal Algorithm for Winner Determination in Combinatorial Auctions. Management Science 51(3), 374–390 (2005)

    Article  Google Scholar 

  17. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach (2002)

    Google Scholar 

  18. Trick, M.: A Dynamic Programming Approach for Consistency and Propagation for Knapsack Constraints. In: CP-AI-OR, pp. 113–124 (2001)

    Google Scholar 

  19. Walsh, T.: Depth-bounded discrepancy search. In: IJCAI, pp. 1388–1393 (1997)

    Google Scholar 

  20. Williams, R., Gomes, C., Selman, B.: On the Connections between Heavy-tails, Backdoors, and Restarts in Combinatorial search. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, Springer, Heidelberg (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Laurent Perron Michael A. Trick

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Leventhal, D.H., Sellmann, M. (2008). The Accuracy of Search Heuristics: An Empirical Study on Knapsack Problems. In: Perron, L., Trick, M.A. (eds) Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems. CPAIOR 2008. Lecture Notes in Computer Science, vol 5015. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68155-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68155-7_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68154-0

  • Online ISBN: 978-3-540-68155-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics