Abstract
A straightforward and efficient way to discover clustering tendencies in data using a recently proposed Maximum Variance Clustering algorithm is proposed. The approach shares the benefits of the plain clustering algorithm with regard to other approaches for clustering. Experiments using both synthetic and real data have been performed in order to evaluate the differences between the proposed methodology and the plain use of the Maximum Variance algorithm. According to the results obtained, the proposal constitutes an efficient and accurate alternative.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press (1981)
Blake, C.L., Merz, C.J.: UCI repository of machine learning databases (1998)
Hall, L.O., Ozyurt, B., Bezdek, J.C.: Clustering with a genetically optimized approach. IEEE Transactions on Evolutionary Computation 3(2), 103–112 (1999)
Jain, A.K., Dubes, R.C.: Algorithms for Clustering Data. Prentice-Hall, Englewood Cliffs (1988)
Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: A review. ACM Computing Surveys 31(3), 265–323 (1999)
MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: Le Cam, L.M., Neyman, J. (eds.) Proc. Fifth Berkeley Symp. Math. Statistics and Probability, vol. 1, pp. 281–297 (1967)
Schwarz, G.: Estimating the dimension of a model. The Annals of Statistics 6 (1978)
Veenman, C.J., Reinders, M.J.T., Backer, E.: A maximum variance cluster algorithm. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(9), 1273–1280 (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Rzaḑca, K., Ferri, F.J. (2003). Incrementally Assessing Cluster Tendencies with a~Maximum Variance Cluster Algorithm. In: Perales, F.J., Campilho, A.J.C., de la Blanca, N.P., Sanfeliu, A. (eds) Pattern Recognition and Image Analysis. IbPRIA 2003. Lecture Notes in Computer Science, vol 2652. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-44871-6_100
Download citation
DOI: https://doi.org/10.1007/978-3-540-44871-6_100
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-40217-6
Online ISBN: 978-3-540-44871-6
eBook Packages: Springer Book Archive