Abstract
This paper introduces the theory of super-resolution image reconstruction and degraded model in brief, and presents a new super-resolution image reconstruction algorithm .The algorithm bases on the new image registration excluded aliased frequency domain and the Projection Onto Convex Set (POCS) method. The algorithm can precisely estimate the image registration parameter by excluding aliased frequency domain of the low-resolution images and killing the center part of the magnitude spectrum. In order to compute the shifts and the rotation angle, we set up the polar coordinates in the center of the image. By computing the frequency function of the rotation angle by integrating over radial lines, the algorithm converts the two-dimension correlation to one-dimension correlation. And then, the POCS method is used to reconstruct high-resolution image from these aliased image sequences. As a result, we find that the reconstruction algorithm has the same precision of image registration as the spatial image registration and good effect of super-resolution image reconstruction.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Fan, C., Gong, J., Zhu, J., Zhang, L. (2006). POCS Super-Resolution Sequence Image Reconstruction Based on Image Registration Excluded Aliased Frequency Domain. In: Huang, DS., Li, K., Irwin, G.W. (eds) Computational Intelligence. ICIC 2006. Lecture Notes in Computer Science(), vol 4114. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-37275-2_155
Download citation
DOI: https://doi.org/10.1007/978-3-540-37275-2_155
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-37274-5
Online ISBN: 978-3-540-37275-2
eBook Packages: Computer ScienceComputer Science (R0)