[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Practical Algorithm for Approximating Shortest Weighted Path between a Pair of Points on Polyhedral Surface

  • Conference paper
Computational Science and Its Applications – ICCSA 2004 (ICCSA 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3045))

Included in the following conference series:

Abstract

This paper presents an approximation algorithm for finding minimum cost path between two points on the surface of a weighted polyhedron in 3D. It terminates in finite time. For a restricted class of polyhedron better approximation bound can be obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agarwal, P.K., Har-Peled, S., Karia, M.: Computing approximate shortest paths on convex polytopes. Algorithmica 33, 227–242 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. Aleksandrov, L., Lanthier, M., Maheshwari, A., Sack, J.-R.: An ε-approximation algorithm for weighted shortest paths on polyhedral surfaces. In: Arnborg, S. (ed.) SWAT 1998. LNCS, vol. 1432, pp. 11–22. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  3. Aleksandrov, L., Maheshwari, A., Sack, J.-R.: Approximation algorithms for geometric shortest path problems. In: Proc. Symp. on Theory of Comput., pp. 286–295 (2000)

    Google Scholar 

  4. Aleksandrov, L., Maheshwari, A., Sack, J.-R.: An improved approximation algorithms for computing geometric shortest paths problems. In: Proc. Symp. on Foundations of Computing Theory, pp. 246–257 (2003)

    Google Scholar 

  5. Chen, J., Han, Y.: Shortest paths on a polyhedron. Int. J. on Computational Geometry and Applications 6, 127–144 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  6. Dijkstra, E.W.: A note on two problems in connection with graphs. Numerical Mathematics 1, 267–271 (1959)

    Article  MathSciNet  Google Scholar 

  7. Kapoor, S.: Efficient computation of geodesic shortest paths. In: Symp. on Theory of Computing, pp. 770–779 (1999)

    Google Scholar 

  8. Lanthier, M., Maheswari, A., Sack, J.-R.: Approximating weighted shortest paths on polyhedral surfaces. Algorithmica 30, 527–562 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  9. Mata, C., Mitchell, J.S.B.: A new algorithm for computing shortest paths in weighted planar subdivisions. In: Proc. 13th ACM Symp. Comput. Geom., pp. 264–273 (1997)

    Google Scholar 

  10. Mitchell, J.S.B., Mount, D.M., Papadimitrou, C.H.: Discrete geodesic problem. SIAM J. on Computing 16, 647–668 (1987)

    Article  MATH  Google Scholar 

  11. Mitchell, J.S.B., Papadimitrou, C.H.: The weighted region problem: finding shortest paths through a weighted planar subdivision. J. of the Association for Computing Machinary 38, 18–73 (1991)

    MATH  Google Scholar 

  12. Papdimitriou, C.H.: An algorithm for shortest path motion in three dimension. Inform. Process. Lett. 20, 259–263 (1985)

    Article  MathSciNet  Google Scholar 

  13. Sack, J.R., Urrutia, J.: Handbook of computational geometry. North-Holland, Elsevier Science B. V., Netherlands (2000)

    MATH  Google Scholar 

  14. Sharir, M., Schorr, A.: On shortest paths in polyhedral space. SIAM J. Computing 15, 93–215 (1986)

    Article  MathSciNet  Google Scholar 

  15. Varadarajan, K.R., Agarwal, P.K.: Approximating shortest path on a non-convex polyhedron. SIAM J. Computing 30, 1321–1340 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  16. Ziegelmann, M.: Constrained shortest paths and related problems, Ph.D. Thesis, Universitat des Saarlandes (Max-Plank Institut fur Informatik) (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Roy, S., Das, S., Nandy, S.C. (2004). A Practical Algorithm for Approximating Shortest Weighted Path between a Pair of Points on Polyhedral Surface. In: Laganá, A., Gavrilova, M.L., Kumar, V., Mun, Y., Tan, C.J.K., Gervasi, O. (eds) Computational Science and Its Applications – ICCSA 2004. ICCSA 2004. Lecture Notes in Computer Science, vol 3045. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24767-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24767-8_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22057-2

  • Online ISBN: 978-3-540-24767-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics