Abstract
Frequent Itemset Mining (FIM) is a fundamental data mining task, which consists of finding frequent sets of items in transaction databases. However, traditional FIM algorithms can find lot of spurious patterns. To address this issue, the OPUS-Miner algorithm was proposed to find statistically significant patterns, called productive itemsets. Though, this algorithm is useful, it cannot be used for interactive data mining, that is the user cannot guide the search toward items of interest using queries, and the database is assumed to be static. This paper addresses this issue by proposing a novel approach to process targeted queries to check if some itemsets of interest to the user are non redundant and productive. The approach relies on a novel structure called Query-Tree to efficiently process queries. An experimental evaluation on several datasets of various types shows that thousands of queries are processed per second on a desktop computer, making it suitable for interactive data mining, and that it is up to 22 times faster than a baseline approach.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Han, J., Pei, J., Kamber, M.: Data Mining: Concepts and Techniques. Elsevier, Waltham (2011)
Webb, G.I., Vreeken, J.: Efficient discovery of the most interesting associations. ACM Trans. Knowl. Discov. Data 8(3), 15 (2014)
Kubat, M., Hafez, A., Raghavan, V.V., Lekkala, J.R., Chen, W.K.: Itemset trees for targeted association querying. IEEE Trans. Knowl. Data Eng. 15(6), 1522–1534 (2003)
Lavergne, J., Benton, R., Raghavan, V.V.: Min-max itemset trees for dense and categorical datasets. In: Chen, L., Felfernig, A., Liu, J., Raś, Z.W. (eds.) ISMIS 2012. LNCS (LNAI), vol. 7661, pp. 51–60. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34624-8_6
Fournier-Viger, P., Mwamikazi, E., Gueniche, T., Faghihi, U.: MEIT: memory efficient itemset tree for targeted association rule mining. In: Motoda, H., Wu, Z., Cao, L., Zaiane, O., Yao, M., Wang, W. (eds.) ADMA 2013, Part II. LNCS (LNAI), vol. 8347, pp. 95–106. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-53917-6_9
Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In: Proceedings of 20th International Conference on Very Large Databases, pp. 487–499. Morgan Kaufmann, Santiago de Chile (1994)
Llinares-López, F., Sugiyama, M., Papaxanthos, L., Borgwardt, K.: Fast and memory-efficient significant pattern mining via permutation testing. In: Proceedings of 21th ACM International Conference on Knowledgs Discovery and Data Mining, pp. 725–734. ACM (2015)
Fournier-Viger, P., Lin, J.C.-W., Vo, B., Chi, T.T., Zhang, J., Le, H.B.: A survey of itemset mining. WIREs Data Mining Knowl. Discov. 7(4), e1207 (2017). https://doi.org/10.1002/widm
Nofong, V.M.: Discovering productive periodic frequent patterns in transactional databases. Ann. Data Sci. 3(3), 235–249 (2016)
Petitjean, F., Li, T., Tatti, N., Webb, G.I.: Skopus: mining top-k sequential patterns under leverage. Data Mining Knowl. Discov. 30(5), 1086–1111 (2016)
Fournier-Viger, P., Wu, C.-W., Tseng, V.S.: Novel concise representations of high utility itemsets using generator patterns. In: Luo, X., Yu, J.X., Li, Z. (eds.) ADMA 2014. LNCS (LNAI), vol. 8933, pp. 30–43. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-14717-8_3
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Fournier-Viger, P., Li, X., Yao, J., Lin, J.CW. (2018). Interactive Discovery of Statistically Significant Itemsets. In: Mouhoub, M., Sadaoui, S., Ait Mohamed, O., Ali, M. (eds) Recent Trends and Future Technology in Applied Intelligence. IEA/AIE 2018. Lecture Notes in Computer Science(), vol 10868. Springer, Cham. https://doi.org/10.1007/978-3-319-92058-0_10
Download citation
DOI: https://doi.org/10.1007/978-3-319-92058-0_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-92057-3
Online ISBN: 978-3-319-92058-0
eBook Packages: Computer ScienceComputer Science (R0)