[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Decision Support System for Pediatric Diagnosis

  • Conference paper
  • First Online:
Innovation and Interdisciplinary Solutions for Underserved Areas (CNRIA 2017, InterSol 2017)

Abstract

Newborns are fragile and have a high risk of dying within the first 28 days of their life, therefore they require quality care from conception. This research aims at implementing a mobile pediatric diagnostic system for the rural settlers in Nigeria, reducing childhood mortality and providing an alternative pediatric professional. 581 records classified with naïve Bayes and decision-stump-tree classifier gave a higher accuracy level for naïve Bayes. A decision-support system is developed to aid health workers in rural areas in providing quality health service for children below six, which will provide low-cost medical service and contribute to reducing childhood mortality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. UN-DESA.: Transforming our world: the 2030 Agenda for Sustainable Development (2015). https://sustainabledevelopment.un.org/post2015/transformingourworld

  2. Chan, M., Lake, A.: Towards ending preventable child deaths. Lancet 379 (2012)

    Google Scholar 

  3. Wardlaw, T., You, D., Newby, H., Anthony, D., Chopra, M.: Child survival: a message of hope but a call for renewed commitment in UNICEF report. Reprod. Health 10, 1–4 (2013)

    Article  Google Scholar 

  4. George, C.M., Vignola, E., Ricca, J., Davis, T., Perin, J., Tam, Y., Perry, H.: Evaluation of the effectiveness of care groups in expanding population coverage of Key child survival interventions and reducing under-5 mortality: a comparative analysis using the lives saved tool (LiST). BMC Publ. Health 1–9 (2015)

    Google Scholar 

  5. Shifa, G.T., Ahmed, A.A., Yalew, A.W.: Early days of life are crucial for child survival in gamo gofa zone, Southern Ethiopia: A community based study. BMC Pediatr. 16, 1–10 (2016)

    Article  Google Scholar 

  6. Hershey, C.L., Doocy, S., Anderson, J., Haskew, C., Spiegel, P., Moss, W.J.: Incidence and risk factors for malaria, pneumonia and diarrhea in children under 5 in UNHCR refugee camps: A retrospective study. Confl. Health 5, 1–11 (2011)

    Article  Google Scholar 

  7. Kahabuka, C., Kvåle, G., Hinderaker, S.G.: Factors associated with severe disease from malaria, pneumonia and diarrhea among children in rural Tanzania – A hospital-based cross-sectional study. BMC Infect. Dis. 12, 1–9 (2012)

    Article  Google Scholar 

  8. Yakoob, M.Y., Theodoratou, E., Jabeen, A., Imdad, A., Eisele, T.P., Ferguson, J., Jhass, A., Rudan, I., Campbell, H., Black, R.E., Bhutta, Z.A.: Preventive zinc supplementation in developing countries: impact on mortality and morbidity due to diarrhea, pneumonia and malaria. BMC Publ. Health 11, 1–10 (2011)

    Article  Google Scholar 

  9. WHO: Health in 2015: from MDGs to SDGs (2016). http://www.who.int/gho/publications/mdgs-sdgs/en/

  10. Sachs, J.D.: Happiness and Sustainable Development: Concepts and Evidence. World Happiness

    Google Scholar 

  11. Ahmed, M.: The challenges ahead. Education (2015)

    Google Scholar 

  12. UNICEF: Accelerating Child Survival and development. The Nigerian Child: United Nations Children’s Fund Nigeria Newsletter, pp. 1–12 (2008)

    Google Scholar 

  13. Sa, J.H.G., Rebelo, M.S., Brentani, A., Grisi, S.J., Iwaya, L.H., Simplicio Jr., M.A., Carvalho, T.C.M.B., Gutierrez, M.A.: Georeferenced and secure mobile health system for large scale data collection in primary care. Int. J. Med. Inform. 94, 91–99 (2016)

    Article  Google Scholar 

  14. Sun, N., Rau, P.L.P., Li, Y., Owen, T., Thimbleby, H.: Design and evaluation of a mobile phone-based health intervention for patients with hypertensive condition. Comput. Hum. Behav. 63, 98–105 (2016)

    Article  Google Scholar 

  15. West, D.M.: Using mobile technology to improve maternal health and fight Ebola: A case study of mobile innovation in Nigeria. Center for Technological Innovation at Brookings (2015)

    Google Scholar 

  16. Hampshire, K., Porter, G., Owusu, S.A., Mariwah, S., Abane, A., Robson, E., Munthalie, A., DeLannoy, A., Bangog, A., Gunguluzaf, N., Milnere, J.: Informal m-health: How are young people using mobile phones to bridge healthcare gaps in Sub-Saharan Africa? Soc. Sci. Med. 142, 90–99 (2015)

    Article  Google Scholar 

  17. Uddin, M.J., Shamsuzzaman, M., Horng, L., Labrique, A., Vasudevan, L., Zeller, K., Chowdhury, M., Larson, C.P., Bishai, D., Alamj, N.: Use of mobile phones for improving vaccination coverage among children living in rural hard-to-reach areas and urban streets of Bangladesh. Vaccine 34(2), 276–283 (2016)

    Article  Google Scholar 

  18. Domek, G.J., Contreras-Roldan, I.L., O’Leary, S.T., Bull, S., Furniss, A., Kempe, A., Asturias, E.J.: SMS text message reminders to improve infant vaccination coverage in Guatemala: A pilot randomized controlled trial. Vaccine 34(21), 2437–2443 (2016)

    Article  Google Scholar 

  19. Nada, N., Adepa, I., Fatin, G.: Design a fuzzy expert system for pediatrics diseases diagnosis. Raf. J. Comp. Maths 5(2), 155–173 (2008)

    Google Scholar 

  20. Corani, G., Zaffalon, M.: JNCC2: An extension of naive Bayes classifier suited for small and incomplete data sets. Environ. Model. Softw. 23(7), 960–961 (2008)

    Article  Google Scholar 

  21. Soria, D., Garibaldi, J.M., Ambrogi, F., Biganzoli, E.M., Ellis, I.O.: A ‘non-parametric’ version of the naive bayes classifier. Knowl. Based Syst. 24(6), 775–784 (2011)

    Article  Google Scholar 

  22. Chen, J., Huang, H., Tian, F., Tian, S.: A selective bayes classifier for classifying incomplete data based on gain ratio. Knowl. Based Syst. 21(7), 530–534 (2008)

    Article  Google Scholar 

  23. Bounhas, M., Hamed, M.G., Prade, H., Serrurier, M., Mellouli, K.: Naive possibilistic classifiers for imprecise or uncertain numerical data. Fuzzy Sets Syst. 239, 137–156 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Iheme, P., Omoregbe, N., Misra, S., Adeoye, D., Adewole, A.: Mobile-Bayesian diagnostic system for childhood infectious diseases. In: Proceedings of ICADIWT 2017, Maxico (2017)

    Google Scholar 

  25. Maglogiannis, I., Loukis, E., Zafiropoulos, E., Stasis, A.: Support vectors machine-based identification of heart valve diseases using heart sounds. Comput. Methods Programs Biomed. 95(1), 47–61 (2009)

    Article  Google Scholar 

  26. Kampouraki, A., Vassis, D., Belsis, P., Skourlas, C.: e-Doctor: A web based support vector machine for automatic medical diagnosis. Procedia Soc. Behav. Sci. 73, 467–474 (2013)

    Article  Google Scholar 

  27. Son, C.S., Kim, Y.N., Kim, H.S., Park, H.S., Kim, M.S.: Decision-making model for early diagnosis of congestive heart failure using rough set and decision tree approaches. J. Biomed. Inform. 45(5), 999–1008 (2012)

    Article  Google Scholar 

  28. Sumbaly, R., Vishnusri, N., Jeyalatha, S.: Diagnosis of breast cancer using decision tree data mining technique. Int. J. Comput. Appl. 98, 1–9 (2014)

    Google Scholar 

  29. Tu, M.C., Shin, D., Shin, D. (eds.): A comparative study of medical data classification methods based on decision tree and bagging algorithms. In: Eighth IEEE International Conference on Dependable, Autonomic and Secure Computing (2009)

    Google Scholar 

  30. Hassan, S., Rafi, M., Shaikh, M.S.: Comparing SVM and naive bayes classifiers for text categorization with Wikitology as knowledge enrichment. In: IEEE 14th International Multitopic Conference (INMIC) (2011)

    Google Scholar 

  31. Nematzadeh, B. Z.: Comparison of Decision Tree and Naive Bayes Methods in Classification of Researcher’s Cognitive Styles in Academic Environment (2012)

    Google Scholar 

  32. Tung, W.L., Quek, C.: GenSo-FDSS: a neural-fuzzy decision support system for pediatric ALL cancer subtype identification using gene expression data. Artif. Intell. Med. 33(1), 61–88 (2005)

    Article  Google Scholar 

  33. Winsemann, T., Köppen, V.: Persistence in enterprise data warehouses. Otto-von-Guericke University Magdeburg, Technical Reports (2012)

    Google Scholar 

  34. Murphy, K.P.: Naive bayes classifiers. University of British Columbia (2006)

    Google Scholar 

Download references

Acknowledgement

We acknowledge the support and sponsorship provided by Covenant University through the Centre for Research, Innovation and Discovery (CUCRID).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Misra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Iheme, P., Omoregbe, N., Misra, S., Ayeni, F., Adeloye, D. (2018). A Decision Support System for Pediatric Diagnosis. In: M. F. Kebe, C., Gueye, A., Ndiaye, A. (eds) Innovation and Interdisciplinary Solutions for Underserved Areas. CNRIA InterSol 2017 2017. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 204. Springer, Cham. https://doi.org/10.1007/978-3-319-72965-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72965-7_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72964-0

  • Online ISBN: 978-3-319-72965-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics