[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Building OLAP Cubes from Columnar NoSQL Data Warehouses

  • Conference paper
  • First Online:
Model and Data Engineering (MEDI 2016)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 9893))

Included in the following conference series:

Abstract

The work presented in this paper aims to build OLAP cubes from big data warehouses implemented by using the columnar NoSQL model. The use of NoSQL models is motivated by the inability of the relational model, usually used to implement data warehousing, to allow data scalability easily. Indeed, the columnar NoSQL model is suitable for storing and managing massive data, especially for decisional queries. However, the column-oriented NoSQL DBMS do not offer online analysis operators (OLAP). Our main contribution is to define a new cube operator called MC-CUBE (MapReduce Columnar CUBE), which allows building columnar NoSQL cubes by taking into account the no relational and distributed aspects when data warehouses are stored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.cs.umb.edu/~poneil/StarSchemaB.PDF.

  2. 2.

    https://hbase.apache.org/.

  3. 3.

    http://hadoop.apache.org/.

  4. 4.

    http://hbase.apache.org/0.94/book/zookeeper.html.

References

  1. Abadi, D.J., Madden, S.R., Hachem, N.: Column-stores vs. row-stores: how different are they really? In: Proceedings of the ACM SIGMOD International Conference on Management of Data, pp 967–980. ACM, New York (2008)

    Google Scholar 

  2. Abelló, A., Ferrarons, F., Romero, O.: Building cubes with MapReduce. In: ACM International Workshop on Data Warehousing and OLAP, pp. 17–24. ACM, New York (2011)

    Google Scholar 

  3. Apache Hive (2014). https://cwiki.apache.org/confluence/display/Hive/HBaseIntegration

  4. Barber, R., Bendel, P., Czech, M., Draese, O., Ho, F., Hrle, N., Idreos, S., Kim, M.S., Koeth, O., Lee, J.G.: Business analytics in (a) blink. IEEE Data Eng. Bull. 35(1), 9–14 (2012)

    Google Scholar 

  5. Beyer K.S., Ramakrishnan, R.: Bottom-up computation of sparse and Iceberg CUBE. In: Proceedings of ACM SIGMOD International Conference on Management of Data, pp. 359–370. ACM, New York (1999)

    Google Scholar 

  6. Bhogal, J., Choksi, I.: Handling big data using NoSQL. In: IEEE International Conference on Advanced Information Networking and Applications Workshops, pp. 393–398. IEEE Computer Society, Washington, D.C. (2015)

    Google Scholar 

  7. Cattell, R.: Scalable SQL and NoSQL data stores. SIGMOD Rec. 39, 12–27 (2011)

    Article  Google Scholar 

  8. Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M., Chandra, T., Fikes, A., Gruber, R.E.: Bigtable: a distributed storage system for structured data. In: Symposium on Operating Systems Design and Implementation, Berkeley, USA, vol. 7, pp. 15–25 (2006)

    Google Scholar 

  9. Chavan, V., Phursule, R.N.: Survey paper on big data. Int. J. Comput. Sci. Inf. Technol. 5(6), 7932–7939 (2014)

    Google Scholar 

  10. Chevalier, R., El Malki, M., Kopliku, A., Teste, O., Tournier, R.: Implementation of multidimensional databases in column-oriented NoSQL systems. In: Advances in Databases and Information Systems, Poitiers, France, pp. 79–91 (2015)

    Google Scholar 

  11. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. In: Proceedings of the 6th Conference on Symposium on Operating Systems Design and Implementation, Berkeley, CA, USA, vol. 6, pp. 137–149 (2014)

    Google Scholar 

  12. Dehdouh, K., Bentayeb, F., Boussaïd, O., Kabachi, N.: Columnar NoSQL CUBE: aggregation operator for columnar NoSQL data warehouse. In: IEEE International Conference on Systems, Man, and Cybernetics, San Diego, USA, pp. 3828–3833(2014)

    Google Scholar 

  13. Dehdouh, K., Bentayeb, F., Boussaïd, O., Kabachi, N.: Using the column oriented NoSQL model for implementing big data warehouses. In: International Conference on Parallel and Distributed Processing Techniques, Las Vegas, USA, pp. 469–475 (2015)

    Google Scholar 

  14. Färber, F., Cha, S.K., Primsch, J., Bornhövd, C., Sigg, S., Lehner, W.: SAP HANA database: data management for modern business applications. SIGMOD Rec. 40, 45–51 (2012)

    Article  Google Scholar 

  15. Gray, J., Chaudhuri, S., Bosworth, A., Layman, A., Reichart, D., Venkatrao, M., Pellow, F., Pirahesh, H.: Data cube: a relational aggregation operator generalizing group-by, cross-tab, and sub-totals. Data Min. Knowl. Discov. 1, 29–53 (1997)

    Article  Google Scholar 

  16. Idreos, S., Groffen, F., Nes, N., Manegold, S., Mullender, S., Kersten, M.: MonetDB: two decades of research in column-oriented database architectures. IEEE Data Eng. Bull. 35, 40–45 (2012)

    Google Scholar 

  17. Imhoff, C., Geiger, J.G., Galemmo, N.: Relational Modeling and Data Warehouse Design. Wiley, New York (2003)

    Google Scholar 

  18. Lamb, A., Fuller, M., Varadarajan, R., Tran, N., Vandiver, B., Doshi, L., Bear, C.: The vertica analytic database: C-store 7 years later. Proc. VLDB Endow. 5(12), 1790–1801 (2012)

    Article  Google Scholar 

  19. Larson, P.-Å., Hanson, E.N., Price, S.L.: Columnar storage in SQL server 2012. IEEE Data Eng. Bull. 35, 15–20 (2012)

    Google Scholar 

  20. Rabuzin, K., Modrušan, N.: Business intelligence and column-oriented databases. In: Proceedings of the Central European Conference on Information and Intelligent Systems, Varaždin Croatia, pp. 12–16 (2014)

    Google Scholar 

  21. Ślezak, D., Eastwood, V.: Data warehouse technology by infobright. In: Binnig, C., Dageville, B. (eds.) Proceedings of the 2009 ACM SIGMOD International Conference on Management of Data, New York, NY, USA, pp. 841–846 (2009)

    Google Scholar 

  22. Ślezak, D., Wróblewski, J., Eastwood, V., Synak, P.: Brighthouse: an analytic data warehouse for ad-hoc queries. Proc. VLDB Endow. 1, 1337–1345 (2008)

    Article  Google Scholar 

  23. Zukowski, M., Wiel, M.V., Boncz, P.: Vectorwise: a vectorized analytical DBMS. In: IEEE 28th International Conference on Data Engineering (ICDE), Washington, pp. 1349–1350 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khaled Dehdouh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Dehdouh, K. (2016). Building OLAP Cubes from Columnar NoSQL Data Warehouses. In: Bellatreche, L., Pastor, Ó., Almendros Jiménez, J., Aït-Ameur, Y. (eds) Model and Data Engineering. MEDI 2016. Lecture Notes in Computer Science(), vol 9893. Springer, Cham. https://doi.org/10.1007/978-3-319-45547-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45547-1_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45546-4

  • Online ISBN: 978-3-319-45547-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics