Abstract
Brain connectivity networks have been applied recently to brain disease diagnosis and classification. Especially for both functional and structural connectivity interaction, graph theoretical analysis provided a new measure for human brain organization in vivo, with one fundamental challenge that is how to define the similarity between a pair of graphs. As one kind of similarity measure for graphs, graph kernels have been widely studied and applied in the literature. However, few works exploit to construct graph kernels for brain connectivity networks, where each node corresponds a unique EEG electrode or regions of interest(ROI). Accordingly, in this paper, we construct a new graph kernel for brain connectivity networks, which takes into account the inherent characteristic of nodes and captures the local topological properties of brain connectivity networks. To validate our method, we have performed extensive evaluation on a real mild cognitive impairment (MCI) dataset with the baseline functional magnetic resonance imaging (fMRI) data from Alzheimers disease Neuroimaging Initiative (ADNI) database. Our experimental results demonstrate the efficacy of the proposed method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Xie, T., He, Y.: Mapping the Alzheimer’s brain with connectomics. Front Psychiatry 2, 77 (2011)
Wang, J., Zuo, X., Dai, Z., Xia, M., Zhao, Z., Zhao, X., Jia, J., Han, Y., He, Y.: Disrupted functional brain connectome in individuals at risk for Alzheimer’s disease. Biol. Psychiatry 73, 472–481 (2012)
Bai, F., Shu, N., Yuan, Y.G., Shi, Y.M., Yu, H., Wu, D., Wang, J.H., Xia, M.R., He, Y., Zhang, Z.J.: Topologically convergent and divergent structural connectivity patterns between patients with remitted geriatric depression and amnestic mild cognitive impairment. J. Neurosci. 32, 4307–4318 (2012)
Pievani, M., Agosta, F., Galluzzi, S., Filippi, M., Frisoni, G.B.: Functional networks connectivity in patients with Alzheimer’s disease and mild cognitive impairment. J. Neurol. 258, 170–170 (2011)
Sporns, O., Tononi, G., Kotter, R.: The human connectome: a structural description of the human brain. PLoS Comput. Biol. 1, 245–251 (2005)
Kaiser, M.: A tutorial in connectome analysis: topological and spatial features of brain networks. Neuroimage 57, 892–907 (2011)
Wee, C.Y., Yap, P.T., Li, W., Denny, K., Browndyke, J.N., Potter, G.G., Welsh-Bohmer, K.A., Wang, L., Shen, D.: Enriched white matter connectivity networks for accurate identification of MCI patients. Neuroimage 54, 1812–1822 (2011)
Scholkopf, B., Smola, A.: Learning with Kernels. The MIT Press, Cambridge (2002)
Shrivastava, A., Li, P.: A new mathematical space for social networks. In: Frontiers of Network Analysis: Methods, Models, and Applications, NIPS Workshop, pp. 1–7. MIT Press (2013)
Camps-Valls, G., Shervashidze, N., Borgwardt, K.M.: Spatio-spectral remote sensing image classification with graph kernels. IEEE Geosci. Remote Sens. Lett. 7, 741–745 (2010)
Zhang, Y., Lin, H., Yang, Z., Li, Y.: Neighborhood hash graph kernel for protein-protein interaction extraction. J. Biomed. Inform. 44, 1086–1092 (2011)
Borgwardt, K.M., Kriegel, H.P.: Shortest-path kernels on graphs. In: Fifth IEEE International Conference on Data Mining, pp. 74–81 (2005)
Johansson, F.D., Jethava, V., Dubhashi, D., Bhattacharyya, C.: Global graph kernels using geometric embedding. In: Proceedings of the 31st International Conference on Machine Learning, vol. 23, pp. 1–9 (2014)
Gärtner, T., Flach, P.A., Wrobel, S.: On graph kernels: hardness results and efficient alternatives. In: Schölkopf, B., Warmuth, M.K. (eds.) COLT/Kernel 2003. LNCS (LNAI), vol. 2777, pp. 129–143. Springer, Heidelberg (2003)
Shervashidze, N., Schweitzer, P., van Leeuwen, E.J., Mehlhorn, K., Borgwardt, K.M.: Weisfeiler-Lehman graph kernels. J. Mach. Learn. Res. 12, 2539–2561 (2011)
Shervashidze, N., Borgwardt, K.M.: Fast subtree kernels on graphs. In: Advances in Neural Information Processing Systems, vol. 22, pp. 1660–1668 (2009)
Feragen, A., Kasenburg, N., Petersen, J., de Bruijne, M., Borgwardt, K.: Scalable kernels for graphs with continuous attributes. In: Advances in Neural Information Processing Systems, pp. 216–224 (2013)
Vishwanathan, S.V.N., Schraudolph, N.N., Kondor, R., Borgwardt, K.M.: Graph kernels. J. Mach. Learn. Res. 11, 1201–1242 (2010)
Van Dijk, K.R., Hedden, T., Venkataraman, A., Evans, K.C., Lazar, S.W., Buckner, R.L.: Intrinsic functional connectivity as a tool for human connectomics: theory, properties, and optimization. J. Neurophysiol. 103, 297–321 (2010)
Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., Mazoyer, B., Joliot, M.: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15, 273–289 (2002)
Zhang, D., Wang, Y., Zhou, L., Yuan, H., Shen, D.: Multimodal classification of Alzheimer’s disease and mild cognitive impairment. Neuroimage 55, 856–867 (2011)
Lenzi, D., Serra, L., Perri, R., Pantano, P., Lenzi, G.L., Paulesu, E., Caltagirone, C., Bozzali, M., Macaluso, E.: Single domain amnestic MCI: a multiple cognitive domains fMRI investigation. Neurobiol. Aging 32, 1542–1557 (2011)
Han, Y., Wang, J., Zhao, Z., Min, B., Lu, J., Li, K., He, Y., Jia, J.: Frequency-dependent changes in the amplitude of low-frequency fluctuations in amnestic mild cognitive impairment: a resting-state fMRI study. Neuroimage 55, 287–295 (2011)
Nobili, F., Salmaso, D., Morbelli, S., Girtler, N., Piccardo, A., Brugnolo, A., Dessi, B., Larsson, S.A., Rodriguez, G., Pagani, M.: Principal component analysis of FDG PET in amnestic MCI. Eur. J. Nucl. Med. Mol. I(35), 2191–2202 (2008)
Acknowledegment
This work was supported in part by National Natural Science Foundation of China (Nos. 61422204, 61473149), the Jiangsu Natural Science Foundation for Distinguished Young Scholar (No. BK20130034), the NUAA Fundamental Research Funds (No. NE2013105), Natural Science Foundation of Anhui Province (No. 1508085MF125), the Open Projects Program of National Laboratory of Pattern Recognition (No. 201407361).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this paper
Cite this paper
Jie, B., Jiang, X., Zu, C., Zhang, D. (2016). The New Graph Kernels on Connectivity Networks for Identification of MCI. In: Rish, I., Langs, G., Wehbe, L., Cecchi, G., Chang, Km., Murphy, B. (eds) Machine Learning and Interpretation in Neuroimaging. MLINI MLINI 2013 2014. Lecture Notes in Computer Science(), vol 9444. Springer, Cham. https://doi.org/10.1007/978-3-319-45174-9_2
Download citation
DOI: https://doi.org/10.1007/978-3-319-45174-9_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-45173-2
Online ISBN: 978-3-319-45174-9
eBook Packages: Computer ScienceComputer Science (R0)