[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Using Discrete PSO Algorithm to Evolve Multi-player Games on Spatial Structure Environment

  • Conference paper
  • First Online:
Advances in Swarm and Computational Intelligence (ICSI 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9141))

Included in the following conference series:

  • 1502 Accesses

Abstract

Mechanisms promoting the evolution of cooperation in two-player, two-strategy evolutionary games have been discussed in great detail over the past decades. Understanding the effects of repeated interactions in multi-player social dilemma game is a formidable challenge. This paper presents and investigates the application of co-evolutionary training techniques based on discrete particle swarm optimization (PSO) to evolve cooperation for the n-player iterated prisoner’s dilemma (IPD) game and n-player iterated snowdrift game (ISD) in spatial environment. Our simulation experiments reveal that, the length of history record, the cost-to-benefit ratio and group size are important factors in determining the cooperation ratio in repeated interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chong, S.Y., Yao, X.: Behavioral Diversity, Choices and Noise in the Iterated Prisoner’s Dilemma. IEEE Transactions on evolutionary computation 9(6), 540–551 (2005)

    Article  Google Scholar 

  2. Chong, S.Y., Yao, X.: Multiple Choices and Reputation in Multiagent Transactions. IEEE Transactions on evolutionary computation 11(6), 689–711 (2007)

    Article  Google Scholar 

  3. Chong, S.Y., Tiño, P., Yao, X.: Measuring Generalization Performance in Coevolutionary Learning. IEEE Transactions on evolutionary computation 12(4), 479–505 (2008)

    Article  Google Scholar 

  4. Chong, S.Y., Tiño, P., Yao, X.: Relationship Between Generalization and Diversityin Coevolutionary Learning. IEEE Transactions on computational intelligence and AI in games 1(3), 214–232 (2009)

    Article  Google Scholar 

  5. Chong, S.Y., Tiño, P., Ku, D.C., Yao, X.: Improving Generalization Performance in Co-Evolutionary Learning. IEEE Transactions on evolutionary computation 16(1), 70–85 (2012)

    Article  Google Scholar 

  6. Ishibuchi, H., Takahashi, K., Hoshino, K., Maeda, J., Nojima, Y.: Effects of configuration of agents with different strategy representations on the evolution of cooperative behaviour in a spatial IPD game. In: IEEE Conference on Computational Intelligence and Games (2011)

    Google Scholar 

  7. Axelrod, R.: The evolution of cooperation. Basic Books, New York (1984)

    Google Scholar 

  8. Nowak, M.A., May, R.M.: Evolutionary games and spatial chaos. Nature 359(6398), 826–829 (1992)

    Article  Google Scholar 

  9. David, B.F.: On the relationship between the duration of an encounter and the evolution of cooperation in the iterated prisoner’s dilemma. Evolution of computation 3(3), 349–363 (1996)

    Google Scholar 

  10. Hauert, C., Doebeli, M.: Spatial structure often inhibits the evolution of cooperation in the snowdrift game. Nature 428(6983), 643–646 (2004)

    Article  Google Scholar 

  11. Wang, X.Y., Chang, H.Y., Yi, Y., Lin, Y.B.: Co-evolutionary learning in the N-choice iterated prisoner’s dilemma with PSO algorithm in a spatial environment. In: 2013 IEEE Symposium Series on Computational Intelligence, pp. 47–53. IEEE press, Singapore (2013)

    Google Scholar 

  12. Darwen, P.J., Yao, X.: Co-evolution in iterated prisoner’s dilemma with intermediate levels of cooperative: Application to missile defense. International Journal of Computational Intelligence and Applications 2(1), 83–107 (2002)

    Article  Google Scholar 

  13. Ishibuchi, H., Namikawa, N.: Evolution of iterated prisoner’s dilemma game strategies in structured demes under random pairing in game playing. IEEE Transactions on evolutionary computation 9(6), 552–561 (2005)

    Article  Google Scholar 

  14. Zheng, Y., Ma, L., Qian, I.: On the convergence analysis and parameter selection in particle swarm optimization. In: Processing of International Conference of Machine Learning Cybern., pp. 1802–1807 (2003)

    Google Scholar 

  15. Franken, N., Engelbrecht, A.P.: Comparing PSO structures to learn the game of checkers from zero knowledge. In: The 2003 Congress on Evolutionary Computation, pp. 234–241(2003)

    Google Scholar 

  16. Franken, N., Engelbrecht, A.P.: Particle swarm optimization approaches to coevolve strategies for the iterated prisoner’s dilemma. IEEE Transactions on evolutionary computation 9(6), 562–579 (2005)

    Article  Google Scholar 

  17. Di Chio, C., Di Chio, P., Giacobini, M.: An evolutionary game-theoretical approach to particle swarm optimisation. In: Giacobini, M., Brabazon, A., Cagnoni, S., Di Caro, G.A., Drechsler, R., Ekárt, A., Esparcia-Alcázar, A.I., Farooq, M., Fink, A., McCormack, J., O’Neill, M., Romero, J., Rothlauf, F., Squillero, G., Uyar, A., Yang, S. (eds.) EvoWorkshops 2008. LNCS, vol. 4974, pp. 575–584. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  18. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proc. IEEE International Conference of Neural Network, vol. 4, pp. 1942–1948 (1995)

    Google Scholar 

  19. Ishibuchi, H., Takahashi, K., Hoshino, K., Maeda, J., Nojima, Y.: Effects of configuration of agents with different strategy representations on the evolution of cooperative behaviour in a spatial IPD game. In: IEEE Conference on Computational Intelligence and Games (2011)

    Google Scholar 

  20. Zheng, D.F., Yin, H.P., Chan, C.H., Hui, P.M.: Cooperative behavior in a model of evolutionary snowdrift games with N-person interactions. Europhys. Lett. 80(1), 18002 (2007)

    Article  MathSciNet  Google Scholar 

  21. Moriyama, K.: Utility based Q-learning to facilitate cooperation in Prisoner’s Dilemma games. Web Intelligence and Agent Systems: An International Journal, IOS Press 7, 233–242 (2009)

    Google Scholar 

  22. Chen, B., Zhang, B., Zhu, W.D.: Combined trust model based on evidence theory in iterated prisoner’s dilemma game. International Journal of Systems Science 42(1), 63–80 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  23. Chiong, R., Kirley, M.: Effects of Iterated Interactions in Multi-player Spatial Evolutionary Games. IEEE Transactions on evolutionary computation (2013). doi:10.1109/TEVC.2011.2167682

  24. Nowark, M.A.: Five rules of the evolution of cooperation. Science 314, 1560–1563 (2006)

    Article  Google Scholar 

  25. Watts, D., Stogatz, S.H.: Collective dynamics of small-world networks. Natrue 393, 440–442 (1998)

    Article  Google Scholar 

  26. Chiong, R., Kirley, M.: Iterated N-Player Games on Small-World Networks. In: GECCO 2011 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wang Xiaoyang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Xiaoyang, W., Lei, Z., Xiaorong, D., Yunlin, S. (2015). Using Discrete PSO Algorithm to Evolve Multi-player Games on Spatial Structure Environment. In: Tan, Y., Shi, Y., Buarque, F., Gelbukh, A., Das, S., Engelbrecht, A. (eds) Advances in Swarm and Computational Intelligence. ICSI 2015. Lecture Notes in Computer Science(), vol 9141. Springer, Cham. https://doi.org/10.1007/978-3-319-20472-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20472-7_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20471-0

  • Online ISBN: 978-3-319-20472-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics