Abstract
Recently Kubica et al. (Inf. Process. Let., 2013) and Kim et al. (submitted to Theor. Comp. Sci.) introduced order-preserving pattern matching: for a given text the goal is to find its factors having the same ‘shape’ as a given pattern. Known results include a linear-time algorithm for this problem (in case of polynomially-bounded alphabet) and a generalization to multiple patterns. We give an O(nloglogn) time construction of an index that enables order-preserving pattern matching queries in time proportional to pattern length. The main component is a data structure being an incomplete suffix tree in the order-preserving setting. The tree can miss single letters related to branching at internal nodes. Such incompleteness results from the weakness of our so called weak character oracle. However, due to its weakness, such oracle can answer queries on-line in O(loglogn) time using a sliding-window approach. For most of the applications such incomplete suffix-trees provide the same functional power as the complete ones. We also give an \(O(\frac{n\log{n}}{\log\log{n}})\) time algorithm constructing complete order-preserving suffix trees.
The original version of this chapter was revised: The copyright line was incorrect. This has been corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-319-02432-5_33
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Albert, M.H., Aldred, R.E.L., Atkinson, M.D., Holton, D.A.: Algorithms for pattern involvement in permutations. In: Eades, P., Takaoka, T. (eds.) ISAAC 2001. LNCS, vol. 2223, pp. 355–366. Springer, Heidelberg (2001)
Baker, B.S.: Parameterized pattern matching: Algorithms and applications. J. Comput. Syst. Sci. 52(1), 28–42 (1996)
Bose, P., Buss, J.F., Lubiw, A.: Pattern matching for permutations. Inf. Process. Lett. 65(5), 277–283 (1998)
Chan, T.M., Patrascu, M.: Counting inversions, offline orthogonal range counting, and related problems. In: Charikar, M. (ed.) SODA, pp. 161–173. SIAM (2010)
Cole, R., Hariharan, R.: Faster suffix tree construction with missing suffix links. SIAM J. Comput. 33(1), 26–42 (2003)
Crochemore, M., Hancart, C., Lecroq, T.: Algorithms on Strings. Cambridge University Press, USA (2007)
de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry. Algorithms and Applications, 3rd edn. Springer, Heidelberg (2008)
Dietzfelbinger, M., Karlin, A.R., Mehlhorn, K., Meyer auf der Heide, F., Rohnert, H., Tarjan, R.E.: Dynamic perfect hashing: Upper and lower bounds. SIAM J. Comput. 23(4), 738–761 (1994)
Guillemot, S., Vialette, S.: Pattern matching for 321-avoiding permutations. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 1064–1073. Springer, Heidelberg (2009)
Ibarra, L.: Finding pattern matchings for permutations. Inf. Process. Lett. 61(6), 293–295 (1997)
Kim, J., Eades, P., Fleischer, R., Hong, S.-H., Iliopoulos, C.S., Park, K., Puglisi, S.J., Tokuyama, T.: Order preserving matching. CoRR, abs/1302.4064 (2013); Submitted to Theor. Comput. Sci.
Knuth, D.E.: The Art of Computer Programming, 2nd edn. Fundamental Algorithms, vol. I. Addison-Wesley (1973)
Kopelowitz, T., Lewenstein, M.: Dynamic weighted ancestors. In: Bansal, N., Pruhs, K., Stein, C. (eds.) SODA, pp. 565–574. SIAM (2007)
Kubica, M., Kulczynski, T., Radoszewski, J., Rytter, W., Walen, T.: A linear time algorithm for consecutive permutation pattern matching. Inf. Process. Lett. 113(12), 430–433 (2013)
Lee, T., Na, J.C., Park, K.: On-line construction of parameterized suffix trees for large alphabets. Inf. Process. Lett. 111(5), 201–207 (2011)
Lovász, L.: Combinatorial problems and exercices. North-Holland (1979)
Rotem, D.: Stack sortable permutations. Discrete Mathematics 33(2), 185–196 (1981)
Ukkonen, E.: On-line construction of suffix trees. Algorithmica 14(3), 249–260 (1995)
Willard, D.E.: Log-logarithmic worst-case range queries are possible in space theta(n). Inf. Process. Lett. 17(2), 81–84 (1983)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Crochemore, M. et al. (2013). Order-Preserving Incomplete Suffix Trees and Order-Preserving Indexes. In: Kurland, O., Lewenstein, M., Porat, E. (eds) String Processing and Information Retrieval. SPIRE 2013. Lecture Notes in Computer Science, vol 8214. Springer, Cham. https://doi.org/10.1007/978-3-319-02432-5_13
Download citation
DOI: https://doi.org/10.1007/978-3-319-02432-5_13
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-02431-8
Online ISBN: 978-3-319-02432-5
eBook Packages: Computer ScienceComputer Science (R0)