[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Leveraging Chat-Based Large Vision Language Models for Multimodal Out-of-Context Detection

  • Conference paper
  • First Online:
Advanced Information Networking and Applications (AINA 2024)

Part of the book series: Lecture Notes on Data Engineering and Communications Technologies ((LNDECT,volume 202))

  • 464 Accesses

Abstract

Out-of-context (OOC) detection is a challenging task involving identifying images and texts that are irrelevant to the context in which they are presented. Large vision-language models (LVLMs) are effective at various tasks, including image classification and text generation. However, the extent of their proficiency in multimodal OOC detection tasks is unclear. In this paper, we investigate the ability of LVLMs to detect multimodal OOC and show that these models cannot achieve high accuracy on OOC detection tasks without fine-tuning. However, we demonstrate that fine-tuning LVLMs on multimodal OOC datasets can further improve their OOC detection accuracy. To evaluate the performance of LVLMs on OOC detection tasks, we fine-tune MiniGPT-4 on the NewsCLIPpings dataset, a large dataset of multimodal OOC. Our results show that fine-tuning MiniGPT-4 on the NewsCLIPpings dataset significantly improves the OOC detection accuracy in this dataset. This suggests that fine-tuning can significantly improve the performance of LVLMs on OOC detection tasks.

F. Shalabi and H. Felouat—These authors contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 129.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 199.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://huggingface.co/blog/idefics.

References

  1. Lin, X., Liao, X., Xu, T., Pian, W., Wong, K.: Rumor detection with hierarchical recurrent convolutional neural network. In: Natural Language Processing And Chinese Computing: 8th CCF International Conference, NLPCC 2019, Dunhuang, China, October 9-14, 2019, Proceedings, Part II 8, pp. 338–348 (2019)

    Google Scholar 

  2. Islam, M., Liu, S., Wang, X., Xu, G.: Deep learning for misinformation detection on online social networks: a survey and new perspectives. Soc. Netw. Anal. Min. 10, 1–20 (2020)

    Article  Google Scholar 

  3. Su, W., et al.: Vl-BERT: pre-training of generic visual-linguistic representations. ArXiv Preprint ArXiv:1908.08530 (2019)

  4. Li, L., Yatskar, M., Yin, D., Hsieh, C., Chang, K.: VisualBERT: a simple and performant baseline for vision and language. ArXiv Preprint ArXiv:1908.03557 (2019)

  5. Radford, A., et al.: Learning transferable visual models from natural language supervision. Int. Conf. Mach. Learn., 8748–8763 (2021)

    Google Scholar 

  6. Radford, A., et al.: Language models are unsupervised multitask learners. OpenAI Blog. 1, 9 (2019)

    Google Scholar 

  7. Brown, T., et al.: Language models are few-shot learners. Adv. Neural. Inf. Process. Syst. 33, 1877–1901 (2020)

    Google Scholar 

  8. Alayrac, J., et al.: Flamingo: a visual language model for few-shot learning. Adv. Neural. Inf. Process. Syst. 35, 23716–23736 (2022)

    Google Scholar 

  9. Li, J., Li, D., Savarese, S., Hoi, S.: BLIP-2: bootstrapping language-image pre-training with frozen image encoders and large language models. ArXiv Preprint ArXiv:2301.12597 (2023)

  10. Chung, H., et al.: Scaling instruction-finetuned language models. ArXiv Preprint ArXiv:2210.11416 (2022)

  11. OpenAI GPT-4 Technical Report (2023)

    Google Scholar 

  12. Wu, C., Yin, S., Qi, W., Wang, X., Tang, Z., Duan, N.: Visual ChatGPT: talking, drawing and editing with visual foundation models. ArXiv Preprint ArXiv:2303.04671 (2023)

  13. Yang, Z., et al.: MM-ReAct: prompting ChatGPT for multimodal reasoning and action. ArXiv Preprint ArXiv:2303.11381 (2023)

  14. Zhu, D., Chen, J., Shen, X., Li, X., Elhoseiny, M.: MiniGPT-4: enhancing vision-language understanding with advanced large language models. ArXiv Preprint ArXiv:2304.10592 (2023)

  15. Singhal, S., Pandey, T., Mrig, S., Shah, R., Kumaraguru, P.: Leveraging intra and inter modality relationship for multimodal fake news detection. Companion Proc. Web Conf. 2022, 726–734 (2022)

    Google Scholar 

  16. Wu, Y., Zhan, P., Zhang, Y., Wang, L., Xu, Z.: Multimodal fusion with co-attention networks for fake news detection. Find. Assoc. Comput. Linguist.: ACL-IJCNLP 2021, 2560–2569 (2021)

    Google Scholar 

  17. Jing, J., Wu, H., Sun, J., Fang, X., Zhang, H.: Multimodal fake news detection via progressive fusion networks. Inf. Process. Manage. 60, 103120 (2023)

    Article  Google Scholar 

  18. Zhang, Y., Trinh, L., Cao, D., Cui, Z., Liu, Y.: Detecting out-of-context multimodal misinformation with interpretable neural-symbolic model. ArXiv Preprint ArXiv:2304.07633 (2023)

  19. Moholdt, E., Khan, S., Dang-Nguyen, D.: Detecting out-of-context image-caption pairs in news: a counter-intuitive method. ArXiv Preprint ArXiv:2308.16611 (2023)

  20. Aneja, S., Bregler, C., Niessner, M.: COSMOS: catching out-of-context image misuse using self-supervised learning. Proc. AAAI Conf. Artif. Intell. 37, 14084–14092 (2023)

    Google Scholar 

  21. Luo, G., Darrell, T., Rohrbach, A.: NewsCLIPpings: automatic generation of out-of-context multimodal media. EMNLP, pp. 6801–6817 (2021)

    Google Scholar 

  22. Huang, M., Jia, S., Chang, M., Lyu, S.: Text-image de-contextualization detection using vision-language models. ICASSP, pp. 8967–8971 (2022)

    Google Scholar 

  23. Zhang, P., et al.: VinVL: revisiting visual representations in vision-language models. CVPR, pp. 5579–5588 (2021)

    Google Scholar 

  24. Shalabi, F., Nguyen, H., Felouat, H., Chang, C., Echizen, I.: Image-text out-of-context detection using synthetic multimodal misinformation. In: 2023 Asia-Pacific Signal And Information Processing Association Annual Summit and Conference (APSIPA ASC) (2023)

    Google Scholar 

  25. Dosovitskiy, A., et al.: An image is worth 16\(\,\times \,\)16 words: transformers for image recognition at scale. ICLR (2021)

    Google Scholar 

  26. Reimers, N., Gurevych, I.: Sentence Embeddings using Siamese BERT-Networks. EMNLP, Sentence-BERT (2019)

    Google Scholar 

  27. Chiang, W., et al.: Vicuna: an open-source chatbot impressing GPT-4 with 90% ChatGPT quality. See https://vicuna.Lmsys.Org (2023). Accessed 14 Apr 2023

  28. Touvron, H., et al.: LLaMA: open and efficient foundation language models. ArXiv Preprint ArXiv:2302.13971 (2023)

  29. Ji, Z., et al.: Survey of hallucination in natural language generation. ACM Comput. Surv. 55, 1–38 (2023)

    Article  Google Scholar 

  30. Hu, E., et al.: LoRA: low-rank adaptation of large language models. ArXiv Preprint ArXiv:2106.09685 (2021)

  31. Kuang, W., et al.: FederatedScope-LLM: a comprehensive package for fine-tuning large language models in federated learning. ArXiv Preprint ArXiv:2309.00363 (2023)

  32. Liu, F., Wang, Y., Wang, T., Ordonez, V.: Visual news: benchmark and challenges in news image captioning. In: EMNLP, pp. 6761–6771 (2021)

    Google Scholar 

  33. Abdelnabi, S., Hasan, R., Fritz, M.: Open-Domain, Content-based, Multi-modal Fact-checking of Out-of-Context Images via Online Resources. In: CVPR, pp. 14940–14949 (2022)

    Google Scholar 

Download references

Acknowledgments

This work was partially supported by JSPS KAKENHI Grant JP21H04907, and by JST CREST Grants JPMJCR18A6 and JPMJCR20D3, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatma Shalabi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shalabi, F., Felouat, H., Nguyen, H.H., Echizen, I. (2024). Leveraging Chat-Based Large Vision Language Models for Multimodal Out-of-Context Detection. In: Barolli, L. (eds) Advanced Information Networking and Applications. AINA 2024. Lecture Notes on Data Engineering and Communications Technologies, vol 202. Springer, Cham. https://doi.org/10.1007/978-3-031-57916-5_8

Download citation

Publish with us

Policies and ethics