[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Knapsack: Connectedness, Path, and Shortest-Path

  • Conference paper
  • First Online:
LATIN 2024: Theoretical Informatics (LATIN 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14579))

Included in the following conference series:

Abstract

We study the Knapsack problem with graph-theoretic constraints. That is, there exists a graph structure on the input set of items of Knapsack and the solution also needs to satisfy certain graph theoretic properties on top of the Knapsack constraints. In particular, we study Connected Knapsack where the solution must be a connected subset of items which has maximum value and satisfies the size constraint of the knapsack. We show that this problem is strongly \(\textsf{NP}\)-complete even for graphs of maximum degree four and \(\textsf{NP}\)-complete even for star graphs. On the other hand, we develop an algorithm running in time \(\mathcal O \left( 2^{\mathcal O (\text {tw} \log \text {tw})}\cdot \text {poly}(n)\min \{s^2,d^2\}\right) \) where \(\text {tw},s,d,n\) are respectively treewidth of the graph, the size of the knapsack, the target value of the knapsack, and the number of items. We also exhibit a \((1-\varepsilon )\) factor approximation algorithm running in time \(\mathcal O \left( 2^{\mathcal O (\text {tw} \log \text {tw})}\cdot \text {poly}(n,1/\varepsilon )\right) \) for every \(\varepsilon >0\). We show similar results for Path Knapsack and Shortest Path Knapsack, where the solution must also induce a path and shortest path, respectively. Our results suggest that Connected Knapsack is computationally the hardest, followed by Path Knapsack and then Shortest Path Knapsack.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 89.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 109.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. A faster parameterized algorithm for pseudoforest deletion. Discrete Applied Mathematics 236, 42–56 (2018)

    Google Scholar 

  2. Bettinelli, A., Cacchiani, V., Malaguti, E.: A branch-and-bound algorithm for the knapsack problem with conflict graph. INFORMS J. Comput. 29(3), 457–473 (2017). https://doi.org/10.1287/ijoc.2016.0742

  3. Bonomo, F., de Estrada, D.: On the thinness and proper thinness of a graph. Discret. Appl. Math. 261, 78–92 (2019). https://doi.org/10.1016/J.DAM.2018.03.072

  4. Bonomo-Braberman, F., Gonzalez, C.L.: A new approach on locally checkable problems. Discret. Appl. Math. 314, 53–80 (2022). https://doi.org/10.1016/J.DAM.2022.01.019

  5. Cacchiani, V., Iori, M., Locatelli, A., Martello, S.: Knapsack problems - an overview of recent advances. part I: single knapsack problems. Comput. Oper. Res. 143, 105692 (2022). https://doi.org/10.1016/j.cor.2021.105692,

  6. Cacchiani, V., Iori, M., Locatelli, A., Martello, S.: Knapsack problems - an overview of recent advances. part II: multiple, multidimensional, and quadratic knapsack problems. Comput. Oper. Res. 143, 105693 (2022). https://doi.org/10.1016/j.cor.2021.105693

  7. Coniglio, S., Furini, F., Segundo, P.S.: A new combinatorial branch-and-bound algorithm for the knapsack problem with conflicts. Eur. J. Oper. Res. 289(2), 435–455 (2021). https://doi.org/10.1016/j.ejor.2020.07.023

  8. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd Edition. MIT Press (2009). http://mitpress.mit.edu/books/introduction-algorithms

  9. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21275-3

    Book  Google Scholar 

  10. Dey, P., Kolay, S., Singh, S.: Knapsack: Connectedness, path, and shortest-path. CoRR abs/2307.12547 (2023)

    Google Scholar 

  11. Fleischner, H., Sabidussi, G., Sarvanov, V.I.: Maximum independent sets in 3- and 4-regular hamiltonian graphs. Discret. Math. 310(20), 2742–2749 (2010). https://doi.org/10.1016/j.disc.2010.05.028

  12. Garey, M.R., Johnson, D.S., Stockmeyer, L.J.: Some simplified np-complete problems. In: Constable, R.L., Ritchie, R.W., Carlyle, J.W., Harrison, M.A. (eds.) Proc. 6th Annual ACM Symposium on Theory of Computing, April 30 - May 2, 1974, Seattle, Washington, USA, pp. 47–63. ACM (1974). https://doi.org/10.1145/800119.803884

  13. Goebbels, S., Gurski, F., Komander, D.: The knapsack problem with special neighbor constraints. Math. Methods Oper. Res. 95(1), 1–34 (2022). https://doi.org/10.1007/s00186-021-00767-5

  14. Gurski, F., Rehs, C.: Solutions for the knapsack problem with conflict and forcing graphs of bounded clique-width. Math. Methods Oper. Res. 89(3), 411–432 (2019). https://doi.org/10.1007/s00186-019-00664-y

  15. Held, S., Cook, W.J., Sewell, E.C.: Maximum-weight stable sets and safe lower bounds for graph coloring. Math. Program. Comput. 4(4), 363–381 (2012). https://doi.org/10.1007/s12532-012-0042-3

  16. Hifi, M., Michrafy, M.: A reactive local search-based algorithm for the disjunctively constrained knapsack problem. J. Oper. Res. Society 57(6), 718–726 (2006)

    Article  Google Scholar 

  17. Hifi, M., Michrafy, M.: Reduction strategies and exact algorithms for the disjunctively constrained knapsack problem. Comput. Oper. Res. 34(9), 2657–2673 (2007)

    Article  Google Scholar 

  18. Ito, T., Demaine, E.D., Zhou, X., Nishizeki, T.: Approximability of partitioning graphs with supply and demand. J. Discr. Algorithms 6(4), 627–650 (2008)

    Article  MathSciNet  Google Scholar 

  19. Kellerer, H., Pferschy, U., Pisinger, D., Kellerer, H., Pferschy, U., Pisinger, D.: Multidimensional knapsack problems. Springer (2004). https://doi.org/10.1007/978-3-540-24777-7_9

  20. Luiz, T.A., Santos, H.G., Uchoa, E.: Cover by disjoint cliques cuts for the knapsack problem with conflicting items. Oper. Res. Lett. 49(6), 844–850 (2021). https://doi.org/10.1016/j.orl.2021.10.001

  21. Mannino, C., Oriolo, G., Ricci-Tersenghi, F., Chandran, L.S.: The stable set problem and the thinness of a graph. Oper. Res. Lett. 35(1), 1–9 (2007). https://doi.org/10.1016/J.ORL.2006.01.009

  22. Martello, S., Toth, P.: Knapsack problems: algorithms and computer implementations. John Wiley & Sons, Inc. (1990)

    Google Scholar 

  23. Pferschy, U., Schauer, J.: The knapsack problem with conflict graphs. J. Graph Algorithms Appl. 13(2), 233–249 (2009). https://doi.org/10.7155/jgaa.00186

  24. Pferschy, U., Schauer, J.: Approximation of knapsack problems with conflict and forcing graphs. J. Comb. Optim. 33(4), 1300–1323 (2017). https://doi.org/10.1007/s10878-016-0035-7

  25. Yamada, T., Kataoka, S., Watanabe, K.: Heuristic and exact algorithms for the disjunctively constrained knapsack problem. Inform. Process. Society Japan J. 43(9) (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Palash Dey or Sipra Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dey, P., Kolay, S., Singh, S. (2024). Knapsack: Connectedness, Path, and Shortest-Path. In: Soto, J.A., Wiese, A. (eds) LATIN 2024: Theoretical Informatics. LATIN 2024. Lecture Notes in Computer Science, vol 14579. Springer, Cham. https://doi.org/10.1007/978-3-031-55601-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-55601-2_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-55600-5

  • Online ISBN: 978-3-031-55601-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics