[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

The Changing Landscape of Machine Learning: A Comparative Analysis of Centralized Machine Learning, Distributed Machine Learning and Federated Machine Learning

  • Conference paper
  • First Online:
Advances in Computational Intelligence Systems (UKCI 2023)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1453))

Included in the following conference series:

Abstract

The landscape of machine learning is changing rapidly due to the ever-evolving nature of data and devices. The large centralized data is replaced by the distributed data and a central server is replaced with a large number of geographically distributed, loosely connected devices, such as smartphones, laptops, and other IoT devices. Therefore, the centralized machine learning (CML) which involves centralized data training on a central server is no longer an effective solution when the data is inherently distributed or too big to process on a central server, or data privacy is paramount; and the quest for a suitable machine learning to resolve these issues led to the evolution of distributed machine learning (DML). For large-scale learning tasks, DML has evolved to effectively handle enormous data within big data and distributed computing environment. Resolving most limitations faced by CML with the implementation of parallel learning on a large number of nodes to optimise time, learning resources and performance. However, DML may not necessarily ensure strict data privacy leading to further development and innovation of federated machine learning (FML) which is a type of DML that further decentralizes learning operations using local data on each participating node incorporating data privacy adherence. This paper analyses the transformation journey of machine learning whilst explaining its evolution from centralized, distributed to federated machine learning. Examining these three variants of machine learning exemplifies their coherent and comparative analysis. Which helps grasp a better understanding of each machine learning type as well as presenting the reason for the changing landscape. Additionally, the paper will address each type of machine learning alongside their different types, strengths and limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 143.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kairouz, P., McMahan, H.B., Avent, B., Bellet, A., Bennis, M., Bhagoji, A.N., Bonawitz, K., Charles, Z., Cormode, G., Cummings, R., et al.: Advances and open problems in federated learning. Found. Trends Mach. Learn. 14(1–2), 1–210 (2021)

    Google Scholar 

  2. Kamp, M.: Black-box parallelization for machine learning. Ph.D. thesis, Universitäts-und Landesbibliothek Bonn (2019)

    Google Scholar 

  3. Liu, J., Huang, J., Zhou, Y., Li, X., Ji, S., Xiong, H., Dou, D.: From distributed machine learning to federated learning: a survey. Knowl. Inf. Syst. 64(4), 885–917 (2022)

    Article  Google Scholar 

  4. McMahan, B., Moore, E., Ramage, D., Hampson, S., Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: Artificial Intelligence and Statistics, pp. 1273–1282. PMLR (2017)

    Google Scholar 

  5. McMahan, B., Ramage, D.: Federated learning: collaborative machine learning without centralized training data. https://ai.googleblog.com/2017/04/federated-learning-collaborative.html (2017)

  6. Microsoft.com: Distributed training with Azure Machine Learning. https://learn.microsoft.com/en-us/azure/machine-learning/concept-distributed-training?view=azureml-api-2 (2023)

  7. Naik, D., Naik, N.: An introduction to federated learning: working, types, benefits and limitations. In: UK Workshop on Computational Intelligence (UKCI). Springer (2023)

    Google Scholar 

  8. Verbraeken, J., Wolting, M., Katzy, J., Kloppenburg, J., Verbelen, T., Rellermeyer, J.S.: A survey on distributed machine learning. ACM Comput. Surv. (CSUR) 53(2), 1–33 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dishita Naik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Naik, D., Naik, N. (2024). The Changing Landscape of Machine Learning: A Comparative Analysis of Centralized Machine Learning, Distributed Machine Learning and Federated Machine Learning. In: Naik, N., Jenkins, P., Grace, P., Yang, L., Prajapat, S. (eds) Advances in Computational Intelligence Systems. UKCI 2023. Advances in Intelligent Systems and Computing, vol 1453. Springer, Cham. https://doi.org/10.1007/978-3-031-47508-5_2

Download citation

Publish with us

Policies and ethics