[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Prognostic Imaging Biomarker Discovery in Survival Analysis for Idiopathic Pulmonary Fibrosis

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Abstract

Imaging biomarkers derived from medical images play an important role in diagnosis, prognosis, and therapy response assessment. Developing prognostic imaging biomarkers which can achieve reliable survival prediction is essential for prognostication across various diseases and imaging modalities. In this work, we propose a method for discovering patch-level imaging patterns which we then use to predict mortality risk and identify prognostic biomarkers. Specifically, a contrastive learning model is first trained on patches to learn patch representations, followed by a clustering method to group similar underlying imaging patterns. The entire medical image can be thus represented by a long sequence of patch representations and their cluster assignments. Then a memory-efficient clustering Vision Transformer is proposed to aggregate all the patches to predict mortality risk of patients and identify high-risk patterns. To demonstrate the effectiveness and generalizability of our model, we test the survival prediction performance of our method on two sets of patients with idiopathic pulmonary fibrosis (IPF), a chronic, progressive, and life-threatening interstitial pneumonia of unknown etiology. Moreover, by comparing the high-risk imaging patterns extracted by our model with existing imaging patterns utilised in clinical practice, we can identify a novel biomarker that may help clinicians improve risk stratification of IPF patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We use the extent of a high-risk pattern as a prognostic biomarker, obtained by measuring the percentage of this pattern within the whole lung.

  2. 2.

    Our method is implemented by Pytorch 1.8. All models were trained on one NVIDIA RTX6000 GPU with 24GB memory. Code is available at https://github.com/anzhao920/PrognosticBiomarkerDiscovery.

References

  1. Abbet, C., Zlobec, I., Bozorgtabar, B., Thiran, J.-P.: Divide-and-rule: self-supervised learning for survival analysis in colorectal cancer. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12265, pp. 480–489. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59722-1_46

    Chapter  Google Scholar 

  2. Abramson, R.G., et al.: Methods and challenges in quantitative imaging biomarker development. Acad. Radiol. 22(1), 25–32 (2015)

    Article  Google Scholar 

  3. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13

    Chapter  Google Scholar 

  4. Chen, S., Ma, K., Zheng, Y.: Med3d: transfer learning for 3D medical image analysis. arXiv preprint arXiv:1904.00625 (2019)

  5. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning, pp. 1597–1607. PMLR (2020)

    Google Scholar 

  6. Cox, D.R.: Regression models and life-tables. J. Roy. Stat. Soc.: Ser. B (Methodol.) 34(2), 187–202 (1972)

    MathSciNet  MATH  Google Scholar 

  7. Depeursinge, A., et al.: Building a reference multimedia database for interstitial lung diseases. Comput. Med. Imaging Graph. 36(3), 227–238 (2012)

    Article  Google Scholar 

  8. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  9. Faraggi, D., Simon, R.: A neural network model for survival data. Stat. Med. 14(1), 73–82 (1995)

    Article  Google Scholar 

  10. Foret, P., Kleiner, A., Mobahi, H., Neyshabur, B.: Sharpness-aware minimization for efficiently improving generalization. arXiv preprint arXiv:2010.01412 (2020)

  11. Graf, E., Schmoor, C., Sauerbrei, W., Schumacher, M.: Assessment and comparison of prognostic classification schemes for survival data. Stat. Med. 18(17–18), 2529–2545 (1999)

    Article  Google Scholar 

  12. Group, B.D.W., et al.: Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin. Pharmacol. Therapeutics 69(3), 89–95 (2001)

    Google Scholar 

  13. Haarburger, C., Weitz, P., Rippel, O., Merhof, D.: Image-based survival prediction for lung cancer patients using CNNs. In: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), pp. 1197–1201. IEEE (2019)

    Google Scholar 

  14. Hassani, A., Walton, S., Shah, N., Abuduweili, A., Li, J., Shi, H.: Escaping the big data paradigm with compact transformers. arXiv preprint arXiv:2104.05704 (2021)

  15. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  16. Hofmanninger, J., Prayer, F., Pan, J., Röhrich, S., Prosch, H., Langs, G.: Automatic lung segmentation in routine imaging is primarily a data diversity problem, not a methodology problem. Europ. Radiol. Exp. 4(1), 1–13 (2020). https://doi.org/10.1186/s41747-020-00173-2

    Article  Google Scholar 

  17. Huang, J., Dong, Q., Gong, S., Zhu, X.: Unsupervised deep learning by neighbourhood discovery. In: International Conference on Machine Learning, pp. 2849–2858. PMLR (2019)

    Google Scholar 

  18. Jaiswal, A., Babu, A.R., Zadeh, M.Z., Banerjee, D., Makedon, F.: A survey on contrastive self-supervised learning. Technologies 9(1), 2 (2021)

    Article  Google Scholar 

  19. Kaplan, E.L., Meier, P.: Nonparametric estimation from incomplete observations. J. Am. Stat. Assoc. 53(282), 457–481 (1958)

    Article  MathSciNet  Google Scholar 

  20. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  21. Kvamme, H., Borgan, Ø., Scheel, I.: Time-to-event prediction with neural networks and cox regression. arXiv preprint arXiv:1907.00825 (2019)

  22. Ley, B., Collard, H.R., King, T.E., Jr.: Clinical course and prediction of survival in idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 183(4), 431–440 (2011)

    Article  Google Scholar 

  23. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101 (2017)

  24. Pölsterl, S., Wolf, T.N., Wachinger, C.: Combining 3D image and tabular data via the dynamic affine feature map transform. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12905, pp. 688–698. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87240-3_66

    Chapter  Google Scholar 

  25. Ratner, B.: The correlation coefficient: its values range between+ 1/\(-\)1, or do they? J. Target. Meas. Anal. Mark. 17(2), 139–142 (2009)

    Article  Google Scholar 

  26. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  27. Shamshad, F., et al.: Transformers in medical imaging: a survey. arXiv preprint arXiv:2201.09873 (2022)

  28. Uno, H., Cai, T., Pencina, M.J., D’Agostino, R.B., Wei, L.J.: On the c-statistics for evaluating overall adequacy of risk prediction procedures with censored survival data. Stat. Med. 30(10), 1105–1117 (2011)

    Article  MathSciNet  Google Scholar 

  29. Walsh, S.L., Humphries, S.M., Wells, A.U., Brown, K.K.: Imaging research in fibrotic lung disease; applying deep learning to unsolved problems. Lancet Respir. Med. 8(11), 1144–1153 (2020)

    Article  Google Scholar 

  30. Wulczyn, E., et al.: Interpretable survival prediction for colorectal cancer using deep learning. NPJ Digital Med. 4(1), 1–13 (2021)

    Article  Google Scholar 

  31. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: beyond empirical risk minimization. arXiv preprint arXiv:1710.09412 (2017)

  32. Zheng, M., et al.: End-to-end object detection with adaptive clustering transformer. arXiv preprint arXiv:2011.09315 (2020)

  33. Zhong, S.: Efficient online spherical k-means clustering. In: Proceedings of the 2005 IEEE International Joint Conference on Neural Networks, 2005, vol. 5, pp. 3180–3185. IEEE (2005)

    Google Scholar 

Download references

Acknowledgements

AZ is supported by CSC-UCL Joint Research Scholarship. DCA is supported by UK EPSRC grants M020533, R006032, R014019, V034537, Wellcome Trust UNS113739. JJ is supported by Wellcome Trust Clinical Research Career Development Fellowship 209,553/Z/17/Z. DCA and JJ are supported by the NIHR UCLH Biomedical Research Centre, UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to An Zhao .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1511 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, A. et al. (2022). Prognostic Imaging Biomarker Discovery in Survival Analysis for Idiopathic Pulmonary Fibrosis. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13437. Springer, Cham. https://doi.org/10.1007/978-3-031-16449-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16449-1_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16448-4

  • Online ISBN: 978-3-031-16449-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics