[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

ReGenMorph: Visibly Realistic GAN Generated Face Morphing Attacks by Attack Re-generation

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2021)

Abstract

Face morphing attacks aim at creating face images that are verifiable to be the face of multiple identities, which can lead to building faulty identity links in operations like border checks. While creating a morphed face detector (MFD), training on all possible attack types is essential to achieve good detection performance. Therefore, investigating new methods of creating morphing attacks drives the generalizability of MADs. Creating morphing attacks was performed on the image level, by landmark interpolation, or on the latent-space level, by manipulating latent vectors in a generative adversarial network. The earlier results in varying blending artifacts and the latter results in synthetic-like striping artifacts. This work presents the novel morphing pipeline, ReGenMorph, to eliminate the LMA blending artifacts by using a GAN-based generation, as well as, eliminate the manipulation in the latent space, resulting in visibly realistic morphed images compared to previous works. The generated ReGenMorph appearance is compared to recent morphing approaches and evaluated for face recognition vulnerability and attack detectability, whether as known or unknown attacks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 55.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 69.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/Puzer/stylegan-encoder.

References

  1. Bojanowski, P., Joulin, A., Lopez-Paz, D., Szlam, A.: Optimizing the latent space of generative networks. In: ICML. Proceedings of Machine Learning Research, vol. 80, pp. 599–608. PMLR (2018)

    Google Scholar 

  2. Bolle, R., Pankanti, S.: Biometrics, Personal Identification in Networked Society: Personal Identification in Networked Society. Kluwer Academic Publishers, Norwell (1998)

    Google Scholar 

  3. Byrd, R., Lu, P., Nocedal, J., Zhu, C.: A limited memory algorithm for bound constrained optimization. SIAM J. Sci. Comput. 16, 1190–1208 (1995). https://doi.org/10.1137/0916069

    Article  MathSciNet  MATH  Google Scholar 

  4. Damer, N., et al.: Detecting face morphing attacks by analyzing the directed distances of facial landmarks shifts. In: Brox, T., Bruhn, A., Fritz, M. (eds.) GCPR 2018. LNCS, vol. 11269, pp. 518–534. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12939-2_36

    Chapter  Google Scholar 

  5. Damer, N., Boutros, F., Saladie, A.M., Kirchbuchner, F., Kuijper, A.: Realistic dreams: cascaded enhancement of GAN-generated images with an example in face morphing attacks. In: BTAS, pp. 1–10. IEEE (2019)

    Google Scholar 

  6. Damer, N., Grebe, J.H., Zienert, S., Kirchbuchner, F., Kuijper, A.: On the generalization of detecting face morphing attacks as anomalies: novelty vs. outlier detection. In: BTAS, pp. 1–5. IEEE (2019)

    Google Scholar 

  7. Damer, N., Saladie, A.M., Braun, A., Kuijper, A.: MorGAN: recognition vulnerability and attack detectability of face morphing attacks created by generative adversarial network. In: BTAS, pp. 1–10. IEEE (2018)

    Google Scholar 

  8. Damer, N., et al.: To detect or not to detect: the right faces to morph. In: ICB, pp. 1–8. IEEE (2019)

    Google Scholar 

  9. Damer, N., Zienert, S., Wainakh, Y., Saladie, A.M., Kirchbuchner, F., Kuijper, A.: A multi-detector solution towards an accurate and generalized detection of face morphing attacks. In: FUSION, pp. 1–8. IEEE (2019)

    Google Scholar 

  10. Deng, J., Guo, J., Xue, N., Zafeiriou, S.: Arcface: additive angular margin loss for deep face recognition. In: CVPR, pp. 4690–4699. Computer Vision Foundation/IEEE (2019)

    Google Scholar 

  11. Ferrara, M., Franco, A., Maltoni, D.: The magic passport. In: IJCB, pp. 1–7. IEEE (2014)

    Google Scholar 

  12. Ferrara, M., Franco, A., Maltoni, D.: Face demorphing. IEEE Trans. Inf. Forensics Secur. 13(4), 1008–1017 (2018)

    Article  Google Scholar 

  13. Fu, B., Spiller, N., Chen, C., Damer, N.: The effect of face morphing on face image quality. In: BIOSIG. LNI, Gesellschaft für Informatik e.V. (2021)

    Google Scholar 

  14. GmbH, C.S.: Facevacs technology - version 9.4.2 (2020). https://www.cognitec.com/facevacs-technology.html

  15. Patrick, G., Mei, N., Kayee, H.: Ongoing face recognition vendor test (FRVT). NIST Interagency Report (2020)

    Google Scholar 

  16. Guo, Y., Zhang, L., Hu, Y., He, X., Gao, J.: MS-Celeb-1M: a dataset and benchmark for large-scale face recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 87–102. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_6

    Chapter  Google Scholar 

  17. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778. IEEE Computer Society (2016)

    Google Scholar 

  18. International Civil Aviation Organization, ICAO: Machine readable passports - part 9 - deployment of biometric identification and electronic storage of data in eMRTDs. Civil Aviation Organization (ICAO) (2015)

    Google Scholar 

  19. International Organization for Standardization: ISO/IEC DIS 30107-3:2016: Information Technology - Biometric presentation attack detection - P. 3: Testing and reporting (2017)

    Google Scholar 

  20. Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of GANs for improved quality, stability, and variation. In: ICLR. OpenReview.net (2018)

    Google Scholar 

  21. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: CVPR, pp. 4401–4410. Computer Vision Foundation/IEEE (2019)

    Google Scholar 

  22. Liu, W., Wen, Y., Yu, Z., Li, M., Raj, B., Song, L.: Sphereface: deep hypersphere embedding for face recognition. In: CVPR, pp. 6738–6746. IEEE Computer Society (2017)

    Google Scholar 

  23. Markets and Markets: Facial Recognition Market by Component (Software Tools and Services), Technology, Use Case (Emotion Recognition, Attendance Tracking and Monitoring, Access Control, Law Enforcement), End-User, and Region - Global Forecast to 2022. Report, November 2017

    Google Scholar 

  24. Massoli, F.V., Carrara, F., Amato, G., Falchi, F.: Detection of face recognition adversarial attacks. Comput. Vis. Image Underst. 202, 103103 (2021)

    Google Scholar 

  25. NIST: FRVT morph web site. NIST Interagency Report (2020)

    Google Scholar 

  26. Phillips, P.J., et al.: Overview of the face recognition grand challenge. In: CVPR (1), pp. 947–954. IEEE Computer Society (2005)

    Google Scholar 

  27. Qin, L., Peng, F., Venkatesh, S., Ramachandra, R., Long, M., Busch, C.: Low visual distortion and robust morphing attacks based on partial face image manipulation. IEEE Trans. Biom. Behav. Identity Sci. 3(1), 72–88 (2021)

    Article  Google Scholar 

  28. Raghavendra, R., Raja, K.B., Venkatesh, S., Busch, C.: Face morphing versus face averaging: vulnerability and detection. In: IJCB, pp. 555–563. IEEE (2017)

    Google Scholar 

  29. Ramachandra, R., Venkatesh, S., Raja, K.B., Busch, C.: Towards making morphing attack detection robust using hybrid scale-space colour texture features. In: ISBA, pp. 1–8. IEEE (2019)

    Google Scholar 

  30. Scherhag, U., Kunze, J., Rathgeb, C., Busch, C.: Face morph detection for unknown morphing algorithms and image sources: a multi-scale block local binary pattern fusion approach. IET Biom. 9(6), 278–289 (2020)

    Article  Google Scholar 

  31. Scherhag, U., et al.: Biometric systems under morphing attacks: assessment of morphing techniques and vulnerability reporting. In: BIOSIG. LNI, vol. P-270, pp. 149–159. GI/IEEE (2017)

    Google Scholar 

  32. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR (2015)

    Google Scholar 

  33. Venkatesh, S., Ramachandra, R., Raja, K.B., Busch, C.: Single image face morphing attack detection using ensemble of features. In: FUSION, pp. 1–6. IEEE (2020)

    Google Scholar 

  34. Venkatesh, S., Zhang, H., Ramachandra, R., Raja, K.B., Damer, N., Busch, C.: Can GAN generated morphs threaten face recognition systems equally as landmark based morphs? - vulnerability and detection. In: IWBF, pp. 1–6. IEEE (2020)

    Google Scholar 

  35. Zhang, H., Venkatesh, S., Ramachandra, R., Raja, K.B., Damer, N., Busch, C.: MIPGAN - generating robust and high quality morph attacks using identity prior driven GAN. CoRR abs/2009.01729 (2020)

    Google Scholar 

  36. Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE Signal Process. Lett. 23(10), 1499–1503 (2016)

    Article  Google Scholar 

Download references

Acknowledgment

This research work has been funded by the German Federal Ministry of Education and Research and the Hessian Ministry of Higher Education, Research, Science and the Arts within their joint support of the National Research Center for Applied Cybersecurity ATHENE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naser Damer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Damer, N. et al. (2021). ReGenMorph: Visibly Realistic GAN Generated Face Morphing Attacks by Attack Re-generation. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2021. Lecture Notes in Computer Science(), vol 13017. Springer, Cham. https://doi.org/10.1007/978-3-030-90439-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-90439-5_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-90438-8

  • Online ISBN: 978-3-030-90439-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics