[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Scalable Visual Exploration of 3D Shape Databases via Feature Synthesis and Selection

  • Conference paper
  • First Online:
Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2020)

Abstract

We present a set of techniques to address the problem of scalable creation of visual overview representations of large 3D shape databases based on dimensionality reduction of feature vectors extracted from shape descriptions. We address the problem of feature extraction by exploring both combinations of hand-engineered geometric features and using the latent feature vectors generated by a deep learning classification method, and discuss the comparative advantages of both approaches. Separately, we address the problem of generating insightful 2D projections of these feature vectors that are able to separate well different groups of similar shapes by two approaches. First, we create quality projections by both automatic search in the space of feature combinations and, alternatively, by leveraging human insight to improve projections by iterative feature selection. Secondly, we use deep learning to automatically construct projections from the extracted features. We show that our three variations of deep learning, which jointly treat feature extraction, selection, and projection, allow efficient creation of high-quality visual overviews of large shape collections, require minimal user intervention, and are easy to implement. We demonstrate our approach on several real-world 3D shape databases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aim@Shape: Aim@shape digital shape workbench 5.0 (2019). http://visionair.ge.imati.cnr.it

  2. Belongie, S., Malik, J., Puzicha, J.: Shape context: a new descriptor for shape matching and object recognition. In: Proceedings of the NIPS, pp. 831–837 (2001)

    Google Scholar 

  3. Bustos, B., Keim, D., Saupe, D., Schreck, T., Vranic, D.: Feature-based similarity search in 3D object databases. ACM Comput. Surv. 37(4), 345–387 (2005)

    Article  Google Scholar 

  4. Chen, X., Zeng, G., Kosinka, J., Telea, A.: Visual exploration of 3D shape databases via feature selection. In: Proceedings of the 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 3: IVAPP, pp. 42–53. INSTICC, SciTePress (2020). https://doi.org/10.5220/0008950700420053

  5. Cyr, C.M., Kimia, B.B.: 3D object recognition using shape similiarity-based aspect graph. In: Proceedings of the IEEE ICCV, pp. 254–261 (2001)

    Google Scholar 

  6. Espadoto, M., Hirata, N., Telea, A.: Deep learning multidimensional projections. J. Inf. Vis. (2020). https://doi.org/10.1177/1473871620909485

  7. Espadoto, M., Martins, R., Kerren, A., Hirata, N., Telea, A.: Towards a quantitative survey of dimension reduction techniques. IEEE TVCG (2019). https://doi.org/10.1109/TVCG.2019.2944182

    Article  Google Scholar 

  8. Feng, C., Jalba, A.C., Telea, A.C.: Improved part-based segmentation of voxel shapes by skeleton cut spaces. Math. Morphol. - Theory Appl. 1(1) (2016)

    Google Scholar 

  9. ITI DB: The informatics & telematics institute database (2019). http://3d-search.iti.gr/3DSearch/index.html

  10. Jalba, A., Kustra, J., Telea, A.: Computing surface and curve skeletons from large meshes on the GPU. IEEE TPAMI 35(6), 783–799 (2013)

    Article  Google Scholar 

  11. Jalba, A., Kustra, J., Telea, A.: Surface and curve skeletonization of large 3D models on the GPU. IEEE TPAMI 35(6), 1495–1508 (2012)

    Article  Google Scholar 

  12. Kalogerakis, E., Hertzmann, A., Singh, K.: Learning 3D mesh segmentation and labeling. ACM TOG 29(4) (2010)

    Google Scholar 

  13. van der Maaten, L., Hinton, G.: Visualizing high-dimensional data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008)

    MATH  Google Scholar 

  14. Martins, R., Coimbra, D., Minghim, R., Telea, A.: Visual analysis of dimensionality reduction quality for parameterized projections. Comput. Graph. 41, 26–42 (2014)

    Article  Google Scholar 

  15. McInnes, L., Healy, J., Melville, J.: UMAP: uniform manifold approximation and projection for dimension reduction. arXiv:1802.03426 (2018)

  16. NASA: Nasa 3D resources (2019). https://nasa3d.arc.nasa.gov

  17. Nonato, L., Aupetit, M.: Multidimensional projection for visual analytics: linking techniques with distortions, tasks, and layout enrichment. IEEE TVCG (2018). https://doi.org/10.1109/TVCG.2018.2846735

    Article  Google Scholar 

  18. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. In: Wallach, H., et al. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates, Inc. (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

  19. Paulovich, F.V., Nonato, L.G., Minghim, R., Levkowitz, H.: Least square projection: a fast high-precision multidimensional projection technique and its application to document mapping. IEEE TVCG 14(3), 564–575 (2008)

    Google Scholar 

  20. Peyre, G., Cohen, L.: Geodesic computations for fast and accurate surface remeshing and parameterization. In: Bandle, C., et al. (eds.) Elliptic and Parabolic Problems. PNLDE, vol. 63, pp. 151–171. Springer, Heidelberg (2005). https://doi.org/10.1007/3-7643-7384-9_18

    Chapter  Google Scholar 

  21. Pezzotti, N., Lelieveldt, B.P., van der Maaten, L., Höllt, T., Eisemann, E., Vilanova, A.: Approximated and user steerable t-SNE for progressive visual analytics. IEEE TVCG 23(7), 1739–1752 (2017)

    Google Scholar 

  22. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for 3D classification and segmentation. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017

    Google Scholar 

  23. Rauber, P.E., da Silva, R.R.O., Feringa, S., Celebi, M.E., Falcão, A.X., Telea, A.C.: Interactive image feature selection aided by dimensionality reduction. In: Proceedings of the EuroVA, pp. 19–23 (2015)

    Google Scholar 

  24. Rusu, R.B., Blodow, N., Beetz, M.: Fast point feature histograms (FPFH) for 3D registration. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 3212–3217 (2009)

    Google Scholar 

  25. Schmidt, W., Sotomayor, J., Telea, A., Silva, C., Comba, J.: A 3D shape descriptor based on depth complexity and thickness histograms. In: Proceedings of the SIBGRAPI (2015)

    Google Scholar 

  26. ShapeNet: ShapeNet online repository (2019). https://www.shapenet.org

  27. Shapira, L., Shamir, A., Cohen-Or, D.: Consistent mesh partitioning and skeletonisation using the shape diameter function. Vis. Comput. 24(4), 249–262 (2008)

    Article  Google Scholar 

  28. Shen, Y.T., Chen, D.Y., Tian, X.P., Ouhyoung, M.: 3D model search engine based on lightfield descriptors. In: Eurographics 2003 - Posters. Eurographics Association (2003). https://doi.org/10.2312/egp.20031031

  29. Shilane, P., Min, P., Kazhdan, M., Funkhouser, T.: The Princeton shape benchmark. In: Proceedings of the SMI, pp. 167–178 (2004). http://shape.cs.princeton.edu/benchmark

  30. Shneiderman, B.: The eyes have it: a task by data type taxonomy for information visualizations. In: Proceedings of the IEEE Symposium on Visual Languages, pp. 336–343 (1996)

    Google Scholar 

  31. Shtrom, E., Leifman, G., Tal, A.: Saliency detection in large point sets. In: Proceedings of the IEEE ICCV, pp. 3591–3598 (2013)

    Google Scholar 

  32. Su, H., Maji, S., Kalogerakis, E., Learned-Miller, E.: Multi-view convolutional neural networks for 3D shape recognition. In: Proceedings of the IEEE ICCV, pp. 945–953 (2015)

    Google Scholar 

  33. Tangelder, J., Veltkamp, R.: A survey of content based 3D shape retrieval methods. Multimed. Tools Appl. 39(3), 441–471 (2008)

    Article  Google Scholar 

  34. Tasse, F., Kosinka, J., Dodgson, N.: Cluster-based point set saliency. In: Proceedings of the IEEE ICCV, pp. 163–171 (2015)

    Google Scholar 

  35. Telea, A., Jalba, A.: Voxel-based assessment of printability of 3D shapes. In: Soille, P., Pesaresi, M., Ouzounis, G.K. (eds.) ISMM 2011. LNCS, vol. 6671, pp. 393–404. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21569-8_34

    Chapter  Google Scholar 

  36. Tukey, J., Tukey, P.: Computer graphics and exploratory data analysis: an introduction. In: The Collected Works of John W. Tukey: Graphics: 1965–1985 (1988)

    Google Scholar 

  37. TurboSquid Inc: Turbosquid shape repository (2019). https://www.turbosquid.com

  38. Verma, V., Snoeyink, J.: Reducing the memory required to find a geodesic shortest path on a large mesh. In: Proceedings of the ACM GIS, pp. 227–235 (2009)

    Google Scholar 

  39. Wattenberg, M.: How to use t-SNE effectively (2016). https://distill.pub/2016/misread-tsne

  40. Wilkinson, L., Anand, A., Grossman, R.: High-dimensional visual analytics: interactive exploration guided by pairwise views of point distributions. IEEE TVCG 12(6), 1363–1372 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandru Telea .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, X., Zeng, G., Kosinka, J., Telea, A. (2022). Scalable Visual Exploration of 3D Shape Databases via Feature Synthesis and Selection. In: Bouatouch, K., et al. Computer Vision, Imaging and Computer Graphics Theory and Applications. VISIGRAPP 2020. Communications in Computer and Information Science, vol 1474. Springer, Cham. https://doi.org/10.1007/978-3-030-94893-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-94893-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-94892-4

  • Online ISBN: 978-3-030-94893-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics