Abstract
A novel projector-camera method is presented that interleaves a sequence of pattern images in the dithering sequence of a DLP projector, in a way that the patterns are imperceptible, and can be acquired cleanly with a synchronized high speed camera. This capability enables the procam system to perform as a real-time range sensor, without affecting the appearance of the projected data. The system encodes and decodes a stream of Gray code patterns imperceptibly, and is deployed on a calibrated and stereo rectified procam system to perform depth triangulation from the extracted patterns. The bandwidth achieved imperceptibly is close to 8 million points per second using a general purpose CPU, which is comparable to perceptible commercial hardware accelerated structured light depth cameras.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Epson answers automatic keystone correction (2002). https://www.projectorpeople.com/slis/downloads/whtpapers/epson/auto-keystone.pdf
Pokemon go (2016). http://itunes.apple.com/us/app/pokemon-go/id1094591345?mt=8
Agin, B.: Computer description of curved objects. IEEE Trans. Comput. C–25(4), 439–449 (1976). https://doi.org/10.1109/TC.1976.1674626
Bandyopadhyay, D., Raskar, R., Fuchs, H.: Dynamic shader lamps: painting on movable objects. In: Proceedings IEEE and ACM International Symposium on Augmented Reality, pp. 207–216. IEEE (2001)
Bermano, A.H., Billeter, M., Iwai, D., Grundhöfer, A.: Makeup lamps: live augmentation of human faces via projection. In: Computer Graphics Forum, vol. 36, pp. 311–323. Wiley Online Library (2017)
Chen, J., Yamamoto, T., Aoyama, T., Takaki, T., Ishii, I.: Real-time projection mapping using high-frame-rate structured light 3D vision. SICE J. Control Measur. Syst. Integr. 8(4), 265–272 (2015)
Cole, A., Ziauddin., S., Greenspan., M.: High-speed imperceptible structured light depth mapping. In: Proceedings of the 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, VISAPP, vol. 4, pp. 676–684. INSTICC, SciTePress (2020). https://doi.org/10.5220/0008955906760684
Corporation, M.: Microsoft hololens | mixed reality technology for business (2016). https://www.microsoft.com/en-us/hololens
Corporation, S.E.: Moverio - smart glasses - epson (2011). https://moverio.epson.com/
Cotting, D., Naef, M., Gross, M., Fuchs, H.: Embedding imperceptible patterns into projected images for simultaneous acquisition and display. In: Proceedings of the 3rd IEEE/ACM International Symposium on Mixed and Augmented Reality, pp. 100–109. IEEE Computer Society (2004)
Dai, J., Chung, R.: Head pose estimation by imperceptible structured light sensing. In: 2011 IEEE International Conference on Robotics and Automation, pp. 1646–1651. IEEE (2011)
Dai, J., Chung, R.: Making any planar surface into a touch-sensitive display by a mere projector and camera. In: 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, pp. 35–42. IEEE (2012)
FLIR Systems, I.: Machine vision cameras (2019). https://www.flir.ca/browse/industrial/machine-vision-cameras/
Fusiello, A., Trucco, E., Verri, A.: A compact algorithm for rectification of stereo pairs. Mach. Vis. Appl. 12(1), 16–22 (2000). https://doi.org/10.1007/s001380050120
Gao, Z., Zhai, G., Wu, X., Min, X., Zhi, C.: DLP based anti-piracy display system. In: 2014 IEEE Visual Communications and Image Processing Conference, pp. 145–148. IEEE (2014)
Gerald, J., Agin, P.T.H.: Movable light-stripe sensor for obtaining three-dimensional coordinate measurements, vol. 0360 (1983). https://doi.org/10.1117/12.934118
Greenspan, M.: Method and apparatus for positional error correction in a robotic pool system using a cue-aligned local camera (2011). uS Patent App. 12/896,045
Grundhöfer, A., Seeger, M., Hantsch, F., Bimber, O.: Dynamic adaptation of projected imperceptible codes. In: Proceedings of the 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 1–10. IEEE Computer Society (2007)
Hieda, N., Cooperstock, J.R.: Digital facial augmentation for interactive entertainment. In: 2015 7th International Conference on Intelligent Technologies for Interactive Entertainment (INTETAIN), pp. 9–16. IEEE (2015)
Intel Corporation: Intel realsense depth camera d400-series. https://software.intel.com/en-us/realsense/d400. Accessed 07 June 2019
Jo, K., Gupta, M., Nayar, S.K.: Disco: display-camera communication using rolling shutter sensors. ACM Trans. Graph. (TOG) 35(5), 150 (2016)
Kagami, S., Hashimoto, K.: Sticky projection mapping: 450-fps tracking projection onto a moving planar surface. In: SIGGRAPH Asia 2015 Emerging Technologies, p. 23. ACM (2015)
Kuroki, Y., Nishi, T., Kobayashi, S., Oyaizu, H., Yoshimura, S.: A psychophysical study of improvements in motion-image quality by using high frame rates. J. Soc. Inform. Display 15(1), 61–68 (2007)
Langerman, D., Sabogal, S., Ramesh, B., George, A.: Accelerating real-time, high-resolution depth Upsampling on FPGAs. In: 2018 IEEE International Conference on Image Processing, Applications and Systems (IPAS), pp. 37–42. IEEE (2018)
Lee, J.C., Hudson, S.E., Tse, E.: Foldable interactive displays. In: Proceedings of the 21st Annual ACM Symposium on User Interface Software and Technology, pp. 287–290. ACM (2008)
Li, B., Sezan, I.: Automatic keystone correction for smart projectors with embedded camera. In: 2004 International Conference on Image Processing, ICIP’04, vol. 4, pp. 2829–2832. IEEE (2004)
Lohry, W., Zhang, S.: High-speed absolute three-dimensional shape measurement using three binary dithered patterns. Opt. Exp. 22(22), 26752–26762 (2014)
Marin, G., Dominio, F., Zanuttigh, P.: Hand gesture recognition with leap motion and kinect devices. In: 2014 IEEE International Conference on Image Processing (ICIP), pp. 1565–1569 (2014). https://doi.org/10.1109/ICIP.2014.7025313
McDowall, I., Bolas, M.: Fast light for display, sensing and control applications. In: Proceedings of IEEE VR 2005 Workshop on Emerging Display Technologies (EDT), pp. 35–36 (2005)
Morishima, S., Yotsukura, T., Binsted, K., Nielsen, F., Pinhanez, C.: Hypermask talking head projected onto real object. In: Multimedia Modeling: Modeling Multimedia Information and Systems, pp. 403–412. World Scientific (2000)
Mouclier, J.: Glasses (2007). uS Patent App. 29/228,279
Narasimhan, S.G., Koppal, S.J., Yamazaki, S.: Temporal dithering of illumination for fast active vision. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5305, pp. 830–844. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88693-8_61
Narita, G., Watanabe, Y., Ishikawa, M.: Dynamic projection mapping onto a deformable object with occlusion based on high-speed tracking of dot marker array. In: Proceedings of the 21st ACM Symposium on Virtual Reality Software and Technology, pp. 149–152. ACM (2015)
Nelson, S., Ivashin, V.: Method for securely distributing meeting data from interactive whiteboard projector (2014). uS Patent 8,874,657
Park, H., Lee, M.-H., Seo, B.-K., Jin, Y., Park, J.-I.: Content adaptive embedding of complementary patterns for nonintrusive direct-projected augmented reality. In: Shumaker, R. (ed.) ICVR 2007. LNCS, vol. 4563, pp. 132–141. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73335-5_15
Projector, P.: Real time tracking & projection mapping (2017). https://www.youtube.com/watch?v=XkXrLZmnQ_M&feature=youtu.be&fbclid=IwAR0pN2j95uxwMvc1fISs_SL5fmWM4Al3zTTnyEiKwmcp2lg0ReEpZfu2c8c
Pvt.Ltd., T.M.: Motionmagix\(^{\rm TM}\) interactive wall and floor. http://www.touchmagix.com/interactive-floor-interactive-wall
Raskar, R., Welch, G., Cutts, M., Lake, A., Stesin, L., Fuchs, H.: The office of the future: a unified approach to image-based modeling and spatially immersive displays. In: Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques, pp. 179–188. ACM (1998)
Raskar, R., Welch, G., Low, K.-L., Bandyopadhyay, D.: Shader lamps: animating real objects with image-based illumination. In: Gortler, S.J., Myszkowski, K. (eds.) EGSR 2001. E, pp. 89–102. Springer, Vienna (2001). https://doi.org/10.1007/978-3-7091-6242-2_9
Resch, C., Keitler, P., Klinker, G.: Sticky projections-a model-based approach to interactive shader lamps tracking. IEEE Trans. Visual Comput. Graph. 22(3), 1291–1301 (2015)
Sagawa, R., Furukawa, R., Kawasaki, H.: Dense 3D reconstruction from high frame-rate video using a static grid pattern. IEEE Trans. Pattern Anal. Mach. Intell. 36(9), 1733–1747 (2014)
Salmi, T., Ahola, J.M., Heikkilä, T., Kilpeläinen, P., Malm, T.: Human-robot collaboration and sensor-based robots in industrial applications and construction. In: Bier, H. (ed.) Robotic Building. SSAE, pp. 25–52. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-70866-9_2
Scharstein, D., Szeliski, R.: High-accuracy stereo depth maps using structured light. In: 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003, Proceedings, vol. 1, pp. I-I. IEEE (2003)
Sehn, T.: Apparatus and method for supplying content aware photo filters (2015). uS Patent 9,225,897
Silapasuphakornwong, P., Unno, H., Uehira, K.: Information embedding in real object images using temporally brightness-modulated light. In: Applications of Digital Image Processing XXXVIII, vol. 9599, p. 95992W. International Society for Optics and Photonics (2015)
Texas Instruments: Lightcrafter 6500 Evaluation Module (2016)
den Uyl, T.M., Tasli, H.E., Ivan, P., Snijdewind, M.: Who do you want to be? Real-time face swap. In: 2015 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG), vol. 1, p. 1. IEEE (2015)
Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22, 1330–1334 (2000)
Zhang, Z.: Microsoft kinect sensor and its effect. IEEE Multimed. 19(2), 4–10 (2012)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Cole, A., Ziauddin, S., Malcolm, J., Greenspan, M. (2022). Efficient Range Sensing Using Imperceptible Structured Light. In: Bouatouch, K., et al. Computer Vision, Imaging and Computer Graphics Theory and Applications. VISIGRAPP 2020. Communications in Computer and Information Science, vol 1474. Springer, Cham. https://doi.org/10.1007/978-3-030-94893-1_11
Download citation
DOI: https://doi.org/10.1007/978-3-030-94893-1_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-94892-4
Online ISBN: 978-3-030-94893-1
eBook Packages: Computer ScienceComputer Science (R0)