Abstract
The topological structure is an intrinsic feature of a scalar field of any spatial dimensionality. The dependence of the topology on the isovalue of the field can be represented in the form of merge and split trees, which are usually combined to a contour tree. Topological landscapes are algorithmically constructed 2D scalar fields, which have the same topological structure (and, therefore, correspond to the same contour tree) as the given multidimensional scalar field and serve as an intuitive low-dimensional depiction of its topological features. Topological landscapes computed for a set of scalar fields, e.g., created by varying over time or by varying simulation parameter values in a simulation ensemble, are not necessarily coherent among themselves. Therefore, a comparative analysis of topology in an ensemble is hindered. We propose a concept for the generation of coherent contour trees for simulation ensembles that is based on merging contour trees of all scalar fields of the ensemble. The coherent contour tree can be exploited to generate coherent topological landscapes. Visual analysis of varying scalar field topology is, then, supported by animating landscapes or by volume rendering of a stack of temporal slices representing color-coded landscapes. We apply the proposed methodology to synthetic data for evaluation purposes as well as to 2D and 3D simulation ensemble data.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Beketayev, K., Weber, G.H., Morozov, D., Abzhanov, A., Hamann, B.: Geometry-preserving topological landscapes. In: Proceedings of the Workshop at SIGGRAPH Asia, pp. 155–160 (2012). https://doi.org/10.1145/2425296.2425324
Berger, W., Piringer, H., Filzmoser, P., Gröller, E.: Uncertainty-aware exploration of continuous parameter spaces using multivariate prediction. In: Computer Graphics Forum, vol. 30, no. 3, pp. 911–920 (2011). https://doi.org/10.1111/j.1467-8659.2011.01940.x
Bremer, P., Weber, G., Pascucci, V., Day, M., Bell, J.: Analyzing and tracking burning structures in lean premixed hydrogen flames. IEEE Trans. Vis. Comput. Graph. 16(2), 248–260 (2010). https://doi.org/10.1109/TVCG.2009.69
Bruckner, S., Möller, T.: Isosurface similarity maps. In: Computer Graphics Forum, vol. 29, no. 3, pp. 773–782 (2010). https://doi.org/10.1111/j.1467-8659.2009.01689.x
Bruckner, S., Möller, T.: Result-driven exploration of simulation parameter spaces for visual effects design. IEEE Trans. Vis. Comput. Graph. 16(6), 1468–1476 (2010). https://doi.org/10.1109/tvcg.2010.190
Carr, H., Snoeyink, J., Axen, U.: Computing contour trees in all dimensions. Comput. Geom. 24(2), 75–94 (2003). https://doi.org/10.1016/S0925-7721(02)00093-7
Demir, D., Beketayev, K., Weber, G.H., Bremer, P.T., Pascucci, V., Hamann, B.: Topology exploration with hierarchical landscapes. In: Proceedings of the Workshop at SIGGRAPH Asia, WASA 2012, pp. 147–154. Association for Computing Machinery, New York (2012). https://doi.org/10.1145/2425296.2425323
Doraiswamy, H., Natarajan, V.: Computing Reeb graphs as a union of contour trees. IEEE Trans. Vis. Comput. Graph. 19(2), 249–262 (2012). https://doi.org/10.1109/TVCG.2012.115
Edelsbrunner, H., Harer, J.: Persistent homology - a survey. Contemp. Math. 453, 257–282 (2008). https://doi.org/10.1090/conm/453/08802
Edelsbrunner, H., Harer, J., Mascarenhas, A., Pascucci, V., Snoeyink, J.: Time-varying Reeb graphs for continuous space-time data. Comput. Geom.: Theory Appl. 41(3), 149–166 (2008). https://doi.org/10.1016/j.comgeo.2007.11.001
Fofonov, A., Linsen, L.: Fast and robust isosurface similarity maps extraction using Quasi-Monte Carlo approach. In: Wilhelm, A.F.X., Kestler, H.A. (eds.) Analysis of Large and Complex Data. SCDAKO, pp. 497–506. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-25226-1_42
Fofonov, A., Molchanov, V., Linsen, L.: Visual analysis of multi-run spatio-temporal simulations using isocontour similarity for projected views. IEEE Trans. Vis. Comput. Graph. 22(8), 2037–2050 (2016). https://doi.org/10.1109/TVCG.2015.2498554
Günther, D., Salmon, J., Tierny, J.: Mandatory critical points of 2D uncertain scalar fields. In: Proceedings of the 16th Eurographics Conference on Visualization, pp. 31–40. Eurographics Association, July 2014. https://doi.org/10.1111/cgf.12359
Gyulassy, A., Natarajan, V., Pascucci, V., Hamann, B.: Efficient computation of Morse-Smale complexes for three-dimensional scalar functions. IEEE Trans. Vis. Comput. Graph. 13(6), 1440–1447 (2007). https://doi.org/10.1109/TVCG.2007.70552
Hahn, H.K., Peitgen, H.O.: IWT-interactive watershed transform: a hierarchical method for efficient interactive and automated segmentation of multidimensional grayscale images. In: Proceedings of the SPIE Medical Imaging: Image Processing, vol. 5032, pp. 643–653 (2003). https://doi.org/10.1117/12.481097
Harvey, W., Wang, Y.: Topological landscape ensembles for visualization of scalar-valued functions. In: Computer Graphics Forum, vol. 29, no. 3, pp. 993–1002 (2010). https://doi.org/10.1111/j.1467-8659.2009.01706.x
Heine, C., et al.: A survey of topology-based methods in visualization. In: Computer Graphics Forum, vol. 35, no. 3, pp. 643–667 (2016). https://doi.org/10.1111/cgf.12933
Herick, M., Molchanov, V., Linsen, L.: Temporally coherent topological landscapes for time-varying scalar fields. In: Proceedings of the 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 3: IVAPP, pp. 54–61. INSTICC, SciTePress, January 2020. https://doi.org/10.5220/0008956300540061
Kraus, M.: Visualization of uncertain contour trees. In: IMAGAPP/IVAPP, pp. 132–139 (2010). https://doi.org/10.5220/0002817201320139
van Kreveld, M., van Oostrum, R., Bajaj, C., Pascucci, V., Schikore, D.: Contour trees and small seed sets for isosurface traversal. In: Proceedings of the Thirteenth Annual Symposium on Computational Geometry, SCG 1997, pp. 212–220. Association for Computing Machinery, New York (1997). https://doi.org/10.1145/262839.269238
Lohfink, A.P., Wetzels, F., Lukasczyk, J., Weber, G.H., Garth, C.: Fuzzy contour trees: alignment and joint layout of multiple contour trees. In: Computer Graphics Forum, vol. 39, no. 3, pp. 343–355 (2020). https://doi.org/10.1111/cgf.13985
Milnor, J.: Morse theory. Ann. Math. Stud. 51 (1963)
Oesterling, P., Heine, C., Jänicke, H., Scheuermann, G.: Visual analysis of high dimensional point clouds using topological landscapes. In: 2010 IEEE Pacific Visualization Symposium (PacificVis), pp. 113–120 (2010). https://doi.org/10.1109/PACIFICVIS.2010.5429601
Oesterling, P., Heine, C., Janicke, H., Scheuermann, G., Heyer, G.: Visualization of high-dimensional point clouds using their density distribution’s topology. IEEE Trans. Vis. Comput. Graph. 17(11), 1547–1559 (2011). https://doi.org/10.1109/TVCG.2011.27
Oesterling, P., Heine, C., Weber, G.H., Morozov, D., Scheuermann, G.: Computing and visualizing time-varying merge trees for high-dimensional data. In: Carr, H., Garth, C., Weinkauf, T. (eds.) TopoInVis 2015. MV, pp. 87–101. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-44684-4_5
Pascucci, V., Cole-McLaughlin, K., Scorzelli, G.: Multi-resolution computation and presentation of contour trees. In: Proceedings of the IASTED Conference on Visualization, Imaging, and Image Processing, pp. 452–290 (2004)
Pfaffelmoser, T., Westermann, R.: Visualizing contour distributions in 2D ensemble data. In: EuroVis (Short Papers), pp. 55–59 (2013)
Phadke, M.N., et al.: Exploring ensemble visualization. In: Visualization and Data Analysis 2012, vol. 8294, p. 82940B. International Society for Optics and Photonics, January 2012. https://doi.org/10.1117/12.912419
Potter, K., et al.: Ensemble-vis: a framework for the statistical visualization of ensemble data. In: 2009 IEEE International Conference on Data Mining Workshops, pp. 233–240. IEEE (2009). https://doi.org/10.1109/ICDMW.2009.55
Reeb, G.: Sur les points singuliers d’une forme de pfaff completement integrable ou d’une fonction numerique [on the singular points of a completely integrable pfaff form or of a numerical function]. Comptes Rendus Acad. Sciences Paris 222, 847–849 (1946)
Saikia, H., Seidel, H.P., Weinkauf, T.: Extended branch decomposition graphs: structural comparison of scalar data. In: Computer Graphics Forum, vol. 33, no. 3, pp. 41–50 (2014). https://doi.org/10.1111/cgf.12360
Sanyal, J., Zhang, S., Dyer, J., Mercer, A., Amburn, P., Moorhead, R.: Noodles: a tool for visualization of numerical weather model ensemble uncertainty. IEEE Trans. Vis. Comput. Graph. 16(6), 1421–1430 (2010). https://doi.org/10.1109/TVCG.2010.181
Scheidegger, C.E., Schreiner, J.M., Duffy, B., Carr, H., Silva, C.T.: Revisiting histograms and isosurface statistics. IEEE Trans. Vis. Comput. Graph. 14(6), 1659–1666 (2008). https://doi.org/10.1109/TVCG.2008.160
Schneider, B., Jäckle, D., Stoffel, F., Diehl, A., Fuchs, J., Keim, D.: Visual integration of data and model space in ensemble learning. IEEE (2017). https://doi.org/10.1109/VDS.2017.8573444
Sedlmair, M., Heinzl, C., Bruckner, S., Piringer, H., Möller, T.: Visual parameter space analysis: a conceptual framework. IEEE Trans. Vis. Comput. Graph. 20(12), 2161–2170 (2014). https://doi.org/10.1109/tvcg.2014.2346321
Sohn, B.S., Bajaj, C.: Time-varying contour topology. IEEE Trans. Vis. Comput. Graph. 12(1), 14–25 (2005). https://doi.org/10.1109/TVCG.2006.16
Tierny, J., Favelier, G., Levine, J.A., Gueunet, C., Michaux, M.: The topology ToolKit. IEEE Trans. Vis. Comput. Graph. 24(1), 832–842 (2018). https://doi.org/10.1109/TVCG.2017.2743938
Wang, J., Hazarika, S., Li, C., Shen, H.W.: Visualization and visual analysis of ensemble data: a survey. IEEE Trans. Vis. Comput. Graph. 25(9), 2853–2872 (2019). https://doi.org/10.1109/tvcg.2018.2853721
Weber, G., Bremer, P.T., Day, M., Bell, J., Pascucci, V.: Feature tracking using Reeb graphs. In: Pascucci, V., Tricoche, X., Hagen, H., Tierny, J. (eds.) Topological Methods in Data Analysis and Visualization, pp. 241–253. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-15014-2_20
Weber, G., Bremer, P.T., Pascucci, V.: Topological landscapes: a terrain metaphor for scientific data. IEEE Trans. Vis. Comput. Graph. 13(6), 1416–1423 (2007). https://doi.org/10.1109/TVCG.2007.70601
Weber, G.H., Bremer, P.T., Pascucci, V.: Topological cacti: visualizing contour-based statistics. In: Peikert, R., Hauser, H., Carr, H., Fuchs, R. (eds.) Topological Methods in Data Analysis and Visualization II, pp. 63–76. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-23175-9_5
Wu, K., Zhang, S.: A contour tree based visualization for exploring data with uncertainty. Int. J. Uncertain. Quantif. 3(3), 203–223 (2013). https://doi.org/10.1615/Int.J.UncertaintyQuantification.2012003956
Zhang, Y., Wang, Y., Parthasarathy, S.: Visualizing attributed graphs via terrain metaphor. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2017, pp. 1325–1334. Association for Computing Machinery, New York (2017). https://doi.org/10.1145/3097983.3098130
Acknowledgements
This work was supported in part by DFG grants MO 3050/2-1 and LI 1530/21-2.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Evers, M., Herick, M., Molchanov, V., Linsen, L. (2022). Coherent Topological Landscapes for Simulation Ensembles. In: Bouatouch, K., et al. Computer Vision, Imaging and Computer Graphics Theory and Applications. VISIGRAPP 2020. Communications in Computer and Information Science, vol 1474. Springer, Cham. https://doi.org/10.1007/978-3-030-94893-1_10
Download citation
DOI: https://doi.org/10.1007/978-3-030-94893-1_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-94892-4
Online ISBN: 978-3-030-94893-1
eBook Packages: Computer ScienceComputer Science (R0)