[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Design and Implementation of Highly Scalable Quantifiable Data Structures

  • Conference paper
  • First Online:
Parallel Computing Technologies (PaCT 2021)

Abstract

Architectural imperatives due to the slowing of Moore’s Law, the broad acceptance of relaxed semantics and the O(n!) worst case verification complexity of generating sequential histories motivate a new approach to concurrent correctness. Quantifiability is proposed as a novel correctness condition that models a system in vector space to launch a new mathematical analysis of concurrency. Analysis is facilitated with linear algebra, better supported and of much more efficient time complexity than traditional combinatorial methods. In this paper, we design and implement a quantifiable stack (QStack) and queue (QQueue) and present results showing that quantifiable data structures are highly scalable through use of relaxed semantics, an explicit implementation trade-off permitted by quantifiability. We present a technique for proving that a data structure is quantifiable and apply this technique to show that the QStack is quantifiably correct.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 63.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 79.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Afek, Y., Korland, G., Yanovsky, E.: Quasi-linearizability: relaxed consistency for improved concurrency. In: Lu, C., Masuzawa, T., Mosbah, M. (eds.) OPODIS 2010. LNCS, vol. 6490, pp. 395–410. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17653-1_29

    Chapter  Google Scholar 

  2. Aspnes, J., Herlihy, M., Shavit, N.: Counting networks. J. ACM (JACM) 41(5), 1020–1048 (1994)

    Article  MathSciNet  Google Scholar 

  3. Bar-Nissan, G., Hendler, D., Suissa, A.: A dynamic elimination-combining stack algorithm. In: Fernàndez Anta, A., Lipari, G., Roy, M. (eds.) OPODIS 2011. LNCS, vol. 7109, pp. 544–561. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25873-2_37

    Chapter  Google Scholar 

  4. Beman Dawes, D.A., Rivera, R.: Boost C++ libraries, December 2018. https://www.boost.org/users/history/version_1_69_0.html. Accessed 15 Jan 2019

  5. Best, E., Randell, B.: A formal model of atomicity in asynchronous systems. Acta Inform. 16(1), 93–124 (1981)

    Article  Google Scholar 

  6. Castañeda, A., Rajsbaum, S., Raynal, M.: Unifying concurrent objects and distributed tasks: interval-linearizability. J. ACM (JACM) 65(6), 1–42 (2018)

    Article  MathSciNet  Google Scholar 

  7. Chockler, G., Lynch, N., Mitra, S., Tauber, J.: Proving atomicity: an assertional approach. In: Fraigniaud, P. (ed.) DISC 2005. LNCS, vol. 3724, pp. 152–168. Springer, Heidelberg (2005). https://doi.org/10.1007/11561927_13

    Chapter  Google Scholar 

  8. Cook, V., Peterson, C., Painter, Z., Dechev, D.: Quantifiability: correctness of concurrent programs in vector space. In: 29th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (2021)

    Google Scholar 

  9. Guttag, J.V., Horowitz, E., Musser, D.R.: Abstract data types and software validation. Commun. ACM 21(12), 1048–1064 (1978)

    Article  MathSciNet  Google Scholar 

  10. Haas, A.: Fast concurrent data structures through timestamping. Ph.D. thesis, University of Salzburg, Salzburg, Austria (2015)

    Google Scholar 

  11. Hendler, D., Shavit, N., Yerushalmi, L.: A scalable lock-free stack algorithm. In: Proceedings of the Sixteenth Annual ACM Symposium on Parallelism in Algorithms and Architectures, SPAA 2004, pp. 206–215. ACM, New York (2004)

    Google Scholar 

  12. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Morgan Kaufmann (2012). Revised Reprint. ISBN 0123973375

    Google Scholar 

  13. Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent objects. ACM Trans. Program. Lang. Syst. (TOPLAS) 12(3), 463–492 (1990)

    Article  Google Scholar 

  14. Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent objects. ACM Trans. Program. Lang. Syst. 12(3), 463–492 (1990)

    Article  Google Scholar 

  15. Hoare, C.A.R.: Proof of correctness of data representations. In: Programming Methodology, pp. 269–281. Springer, New York (1978)

    Google Scholar 

  16. Kirsch, C.M., Lippautz, M., Payer, H.: Fast and scalable, lock-free k-FIFO queues. In: Malyshkin, V. (ed.) PaCT 2013. LNCS, vol. 7979, pp. 208–223. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39958-9_18

    Chapter  Google Scholar 

  17. Lamport, L.: How to make a multiprocessor computer that correctly executes multiprocess program. IEEE Trans. Comput. 28(9), 690–691 (1979)

    Article  Google Scholar 

  18. Lipton, R.J.: Reduction: a method of proving properties of parallel programs. Commun. ACM 18(12), 717–721 (1975)

    Article  MathSciNet  Google Scholar 

  19. Michael, M.M., Scott, M.L.: Simple, fast, and practical Non-Blocking and blocking concurrent queue algorithms. Technical Report 600 (1995)

    Google Scholar 

  20. Michael, M.M., Scott, M.L.: Nonblocking algorithms and preemption-safe locking on multiprogrammed shared memory multiprocessors. J. Parallel Distrib. Comput. 51(1), 1–26 (1998)

    Article  Google Scholar 

  21. Morrison, A., Afek, Y.: Fast concurrent queues for x86 processors. In: Proceedings of the 18th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (2013)

    Google Scholar 

  22. Papadimitriou, C.H.: The serializability of concurrent database updates. J. ACM (JACM) 26(4), 631–653 (1979)

    Article  MathSciNet  Google Scholar 

  23. Peterson, C., Cook, V., Dechev, D.: Concurrent correctness in vector space. In: Henglein, F., Shoham, S., Vizel, Y. (eds.) VMCAI 2021. LNCS, vol. 12597, pp. 151–173. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67067-2_8

    Chapter  Google Scholar 

  24. Rihani, H., Sanders, P., Dementiev, R.: Brief announcement: multiqueues: simple relaxed concurrent priority queues. In: Proceedings of the 27th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA 2015, pp. 80–82. ACM, New York (2015). https://doi.org/10.1145/2755573.2755616. http://doi.acm.org/10.1145/2755573.2755616

  25. Scherer, W.N., Scott, M.L.: Nonblocking concurrent data structures with condition synchronization. In: Guerraoui, R. (ed.) DISC 2004. LNCS, vol. 3274, pp. 174–187. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30186-8_13

    Chapter  Google Scholar 

  26. Treiber, R.K.: Systems programming: coping with parallelism. International Business Machines Incorporated, Thomas J. Watson Research Center, New York (1986)

    Google Scholar 

  27. Wing, J.M.: Verifying atomic data types. Int. J. Parallel Prog. 18(5), 315–357 (1989)

    Article  Google Scholar 

  28. Yang, C.: Fast wait free queue, October 2018. https://github.com/chaoran/fast-wait-free-queue. Accessed 5 Feb 2019

  29. Yang, C., Mellor-Crummey, J.: A wait-free queue as fast as fetch-and-add. In: Proceedings of the 21st ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming - PPoPP 2016, pp. 1–13. ACM Press, New York (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christina Peterson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cook, V., Peterson, C., Painter, Z., Dechev, D. (2021). Design and Implementation of Highly Scalable Quantifiable Data Structures. In: Malyshkin, V. (eds) Parallel Computing Technologies. PaCT 2021. Lecture Notes in Computer Science(), vol 12942. Springer, Cham. https://doi.org/10.1007/978-3-030-86359-3_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86359-3_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86358-6

  • Online ISBN: 978-3-030-86359-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics