Abstract
While information is growing exponentially, datasets are getting bigger and bigger containing valuable information that can expand human knowledge. To extract meaningful information from these dense datasets, the need for effective graphical representations that take advantage of the human’s visual perception capabilities is revealed. The visualization of this kind of data is a complex task. These big datasets are in general inherently multidimensional (n-D), facing the challenge of finding suitable mappings from the n-D space to a 2D or 3D space. Even though multiple visualization methods have been developed for n-D data, many of them do not allow the complete restoration of the data from its reduced representation and/or do not represent the complete n-D dataset. The General Lines Coordinates (GLC) are reversible visual representations that preserve n-D information for knowledge discovery. In this paper, we present the npGLC-Vis Library, a data visualization library supporting Non-Paired General Line Coordinates (npGLC) with associated traditional interactions like brushing, zooming, and panning. npGLC-Vis is a collection of visualization methods, designed for experimenting with npGLC techniques in the development of visualization applications. We present the library design and implementation, exemplifying it through the representation of different datasets.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Asuncion, A., Newman, D.: UCI machine learning repository (2007). http://archive.ics.uci.edu/ml
Blumenschein, M., Zhang, X., Pomerenke, D., Keim, D.A., Fuchs, J.: Evaluating reordering strategies for cluster identification in parallel coordinates. In: Computer Graphics Forum, vol. 39, pp. 537–549. Wiley Online Library (2020). https://doi.org/10.1111/cgf.14000
Bostock, M., Ogievetsky, V., Heer, J.: D\(^3\) data-driven documents. IEEE Trans. Vis. Comput. Graph. 17(12), 2301–2309 (2011)
Bostock, M.: Towards reusable charts (2012). https://bost.ocks.org/mike/chart/
Bostock, M.: Let’s make a (D3) plugin (2015). https://bost.ocks.org/mike/d3-plugin/
Draper, G.M., Livnat, Y., Riesenfeld, R.F.: A survey of radial methods for information visualization. IEEE Trans. Vis. Comput. Graph. 15(5), 759–776 (2009). https://doi.org/10.1109/TVCG.2009.23
Iglesias, F., Zseby, T., Ferreira, D., Zimek, A.: MDCGen: multidimensional dataset generator for clustering. J. Classif. 36(3), 599–618 (2019)
Inselberg, A.: A survey of parallel coordinates. In: Hege, H.C., Polthier, K. (eds.) Mathematical Visualization, pp. 167–179. Springer, Heidelberg (1998). https://doi.org/10.1007/978-3-662-03567-2_13
Kovalerchuk, B.: Visualization of multidimensional data with collocated paired coordinates and general line coordinates. In: Visualization and Data Analysis 2014, vol. 9017, p. 90170I. International Society for Optics and Photonics (2014). https://doi.org/10.1117/12.2042427
Kovalerchuk, B.: Visual Knowledge Discovery and Machine Learning, p. 144. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-319-73040-0
Kovalerchuk, B.: GLC case studies. In: Kovalerchuk, B. (ed.) Visual Knowledge Discovery and Machine Learning. ISRL, vol. 144, pp. 101–140. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73040-0_5
Kovalerchuk, B., Grishin, V.: Adjustable general line coordinates for visual knowledge discovery in nd data. Inf. Vis. 18(1), 3–32 (2019)
Lu, L.F., Huang, M.L., Zhang, J.: Two axes re-ordering methods in parallel coordinates plots. J. Vis. Lang. Comput. 33(C), 3–12 (2016). https://doi.org/10.1016/j.jvlc.2015.12.001
Munzner, T.: Visualization Analysis and Design. CRC Press (2014). https://doi.org/10.1201/b17511
Peng, W., Ward, M.O., Rundensteiner, E.A.: Clutter reduction in multi-dimensional data visualization using dimension reordering. In: IEEE Symposium on Information Visualization, pp. 89–96. IEEE (2004)
Tominski, C., Schumann, H.: Interactive Visual Data Analysis. CRC Press (2020). https://doi.org/10.1201/9781315152707
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Luque, L.E., Ganuza, M.L., Antonini, A.S., Castro, S.M. (2021). npGLC-Vis Library for Multidimensional Data Visualization. In: Naiouf, M., Rucci, E., Chichizola, F., De Giusti, L. (eds) Cloud Computing, Big Data & Emerging Topics. JCC-BD&ET 2021. Communications in Computer and Information Science, vol 1444. Springer, Cham. https://doi.org/10.1007/978-3-030-84825-5_14
Download citation
DOI: https://doi.org/10.1007/978-3-030-84825-5_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-84824-8
Online ISBN: 978-3-030-84825-5
eBook Packages: Computer ScienceComputer Science (R0)