Abstract
The recent world policies have shown the necessity of implementing suitable strategies, especially in urban contexts, in order to promote more sustainable transportation systems. In this context, the rail-based systems allow to achieve sustainable goals according to a threefold effect: reduction in externalities (such as congestion, accidents, air and noise pollution), increase in efficiency (in terms of operational cost per real/potential carried passenger), and delocalization of energy production centres (large industrial plants out of population centres producing with optimal yields). Positive environmental aspects of the rail and metro systems may be further amplified by implementing Energy-Saving Strategies (ESSs) based on the adoption of suitable driving profiles and/or the installation of onboard/wayside recovery devices. In this context, we investigate the effects of rolling-stock unavailability (for breakdowns, maintenance or under-sized fleet) on the effectiveness of ESSs within a multi-objective framework which combines the reduction in energy consumption with a passenger-oriented perspective. A real metro line in the south of Italy has been analysed as case-study in order to show the feasibility of the proposed approach.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Caprara, A., Kroon, L., Monaci, M., Peeters, M., Toth, P.: Passenger railway optimization. Handbooks Oper. Res. Manag. Sci. 14, 129–187 (2007). https://doi.org/10.1016/S0927-0507(06)14003-7
D’Acierno, L., Botte, M., Montella, B.: Assumptions and simulation of passenger behaviour on rail platforms. Int. J. Transp. Dev. Integr. 2(2), 123–135 (2018). https://doi.org/10.2495/TDI-V2-N2-123-135
D’Acierno, L., Botte, M., Placido, A., Caropreso, C., Montella, B.: Methodologyfor determining dwell times consistent with passenger flows in the case ofmetro services. Urban Rail Transit 3(2), 73–89 (2017). https://doi.org/10.1007/s40864-017-0062-4
Botte, M., D’Acierno, L.: Dispatching and rescheduling tasks and theirinteractions with travel demand and the energy domain: models and algorithms. Urban Rail Transit 4(4), 163–197 (2018). https://doi.org/10.1007/s40864-018-0090-8
D’Acierno, L., Botte, M.: An analytical approach for determining reserve timeson metro systems. In: Proceedings of the 17th IEEE International Conferenceon Environment and Electrical Engineering (IEEE EEEIC 2017) and 1ndIndustrial and Commercial Power Systems Europe (I&CPS 2017). Milan, Italy (2017). https://doi.org/10.0.4.85/EEEIC.2017.7977519
D’Acierno, L., Botte, M., Gallo, M., Montella, B.: Defining reserve times for metro systems: an analytical approach. J. Adv. Transp. 2018, 1–15 (2018). https://doi.org/10.1155/2018/5983250
D’Acierno, L., Botte, M.: Passengers’ satisfaction in the case of energy-saving strategies: a rail system application. In: Proceedings of the 18th IEEE International Conference on Environment and Electrical Engineering (IEEE EEEIC 2018) and 2nd Industrial and Commercial Power Systems Europe (I&CPS 2018). Palermo, Italy (2018). https://doi.org/10.1109/EEEIC.2018.8494575
D’Acierno, L., Botte, M.: A passenger-oriented optimization model for implementing energy-saving strategies in railway contexts. Energies 11(11), 1–25 (2018). https://doi.org/10.3390/en11112946
Gonzalez-Gil, A., Palacin, R., Batty, P.: Sustainable urban rail systems: strategies and technologies for optimal management of regenerative braking energy. Energy Convers. Manage. 75, 374–388 (2013). https://doi.org/10.1016/j.enconman.2013.06.039
Ghavihaa, N., Campilloa, J., Bohlinb, M., Dahlquista, E.: Review of application of energy storage devices in railway transportation. Energy Procedia 105, 4561–4568 (2017). https://doi.org/10.1016/j.egypro.2017.03.980
Song, R., Yuan, T., Yang, J., He, H.: Simulation of braking energy recovery for the metro vehicles based on the traction experiment system. Simulation 93, 1099–1112 (2017). https://doi.org/10.1177/0037549717726146
Yan, X., Cai, B., Ning, B., ShangGuan, W.: Online distributed cooperative model predictive control of energy-saving trajectory planning for multiple high-speed train movements. Transp. Res. Part C 69, 60–78 (2016). https://doi.org/10.1016/j.trc.2016.05.019
Huang, Y., Ma, X., Su, S., Tang, T.: Optimization of train operation in multiple interstations with multi-population genetic algorithm. Energies 8, 14311–14329 (2015). https://doi.org/10.3390/en81212433
De Martinis, V., Weidmann, U.: Definition of energy-efficient speed profiles within rail traffic by means of supply design models. Res. Transp. Econ. 54, 41–50 (2015). https://doi.org/10.1016/j.retrec.2015.10.024
Sicre, C., Cucala, A., Fernandez, A., Lukaszewicz, P.: Modeling and optimizing energy-efficient manual driving on high-speed lines. IEEJ Trans. Electr. Electron. Eng. 7, 633–640 (2012). https://doi.org/10.1002/tee.21782
Zhao, N., Roberts, C., Hillmansen, S., Tian, Z., Weston, P., Chen, L.: An integrated metro operation optimization to minimize energy consumption. Transp. Res. Part C 75, 168–182 (2017). https://doi.org/10.1016/j.trc.2016.12.013
De Martinis, V., Corman, F.: Data-driven perspectives for energy efficient operations in railway systems: current practices and future opportunities. Transp. Res. Part C 95, 679–697 (2018). https://doi.org/10.1016/j.trc.2018.08.008
Corman, F., Meng, L.: A review of online dynamic models and algorithms for railway traffic management. IEEE Trans. Intell. Transp. Syst. 16(3), 1274–1284 (2015). https://doi.org/10.1109/TITS.2014.2358392
Goverde, R.: Punctuality of Railway Operations and Timetable Stability Analysis. Delft University of Technology, Delft, The Netherlands (2005)
Caimi, G., Fuchsberger, M., Laumanns, M., Lüthi, M.: A model predictive control approach for discrete-time rescheduling in complex, central railway station areas. Comput. Oper. Res. 39(11), 2578–2593 (2012). https://doi.org/10.1016/j.cor.2012.01.003
Mazzarello, M., Ottaviani, E.: A traffic management system for real-time traffic optimization in railways. Transp. Res. Part B 41(2), 246–274 (2007). https://doi.org/10.1016/j.trb.2006.02.005
Quaglietta, E., Corman, F., Goverde, R.: Stability analysis of railway dispatching plans in a stochastic and dynamic environment. J. Rail Transp. Plann. Manag. 3(4), 137–149 (2013). https://doi.org/10.1016/j.jrtpm.2013.10.009
Törnquist, J.: Railway traffic disturbance management-an experimental analysis of disturbance complexity, management objectives and limitations in planning horizon. Transp. Res. Part A 41(3), 249–266 (2007). https://doi.org/10.1016/j.tra.2006.05.003
Corman, F., D’Ariano, A., Pacciarelli, D., Pranzo, M.: Bi-objective conflict detection and resolution in railway traffic management. Transp. Res. Part C 20(1), 79–94 (2012). https://doi.org/10.1016/j.trc.2010.09.009
D’Ariano, A., Pacciarelli, D., Samà, M., Corman, F.: Microscopic delay management: Minimizing train delays and passenger travel times during real-time railway traffic control. In: Proceedings of the 5th IEEE International Conference on Models and Technologies for Intelligent Transportation Systems (IEEE MT-ITS 2017). Naples, Italy (2017). https://doi.org/10.1109/MTITS.2017.8005686
Xu, P., Corman, F., Peng, Q., Luan, X.: A timetable rescheduling approach and transition phases for high speed railway traffic during disruptions. Transp. Res. Rec. 2607(1), 82–92 (2017). https://doi.org/10.3141/2607-11
Botte, M., D’Acierno, L., Montella, B., Placido, A.: A stochastic approach for assessing intervention strategies in the case of metro system failures. In: Proceedings of 2015 AEIT Annual Conference (AEIT 2015). Naples, Italy (2015). https://doi.org/10.1109/AEIT.2015.7415258
D’Acierno, L., Placido, A., Botte, M., Gallo, M., Montella, B.: Defining robust recovery solutions for preserving service quality during rail/metro systems failure. Int. J. Supply Oper. Manag. 3(3), 1351–1372 (2016). https://doi.org/10.22034/2016.3.01
Larsen, R., Pranzo, M., D’Ariano, A., Corman, F., Pacciarelli, D.: Susceptibility of optimal train schedules to stochastic disturbances of process times. Flex. Serv. Manuf. J. 26, 466–489 (2014). https://doi.org/10.1007/s10696-013-9172-9
Davydov, B., Chebotarev, V., Kablukova, K.: Stochastic model for the real-time train rescheduling. Int. J. Transp. Dev. Integr. 1(3), 307–317 (2017). https://doi.org/10.2495/TDI-V1-N3-307-317
Li, X., Shou, B., Ralescu, D.: Train rescheduling with stochastic recovery time: a new track-backup approach. IEEE Trans. Syst. Man Cybern. Syst. 44(9), 1216–1233 (2014). https://doi.org/10.1109/TSMC.2014.2301140
Kecman, P., Corman, F., Meng, L.: Train delay evolution as a stochastic process. In: Proceedings of the 6th International Conference on Railway Operations Modelling and Analysis (RailTokyo 2015). Narashino, Japan (2015)
Kecman, P., Corman, F., Peterson, A., Joborn, M.: Stochastic prediction of train delays in real-time using bayesian networks. In: Proceedings of Conference on Advanced Systems in Public Transport (CASPT 2015). Rotterdam, The Netherlands (2015). https://doi.org/10.3929/ethz-b-000175478
Meng, L., Zhou, X.: Robust single-track train dispatching model under a dynamic and stochastic environment: a scenario-based rolling horizon approach. Transp. Res. Part B 45(7), 1080–1102 (2011). https://doi.org/10.1016/j.trb.2011.05.001
Yin, J., Tang, T., Yang, L., Gao, Z., Ran, B.: Energy-efficient metro train rescheduling with uncertain time-variant passenger demands: an approximate dynamic programming approach. Transp. Res. Part B 91, 178–210 (2016). https://doi.org/10.1016/j.trb.2016.05.009
Louwerse, I., Huisman, D.: Adjusting a railway timetable in case of partial or complete blockades. Eur. J. Oper. Res. 235, 583–593 (2014). https://doi.org/10.1016/j.ejor.2013.12.020
Zhan, S., Kroon, L., Veelenturf, L., Wagenaar, J.: Real-time high-speed train rescheduling in case of a complete blockage. Transp. Res. Part B 78, 182–201 (2015). https://doi.org/10.1016/j.trb.2015.04.001
Durmus, M., Takai, S., Söylemez, M.: Fault diagnosis in fixed-block railway signaling systems: a discrete event systems approach. IEEJ Trans. Electr. Electron. Eng. 9(5), 523–531 (2014). https://doi.org/10.1002/tee.22001
D’Acierno, L., Placido, A., Botte, M., Gallo, M., Montella, B.: A methodological approach for managing rail disruptions with different perspectives. Int. J. Math. Models Meth. Appl. Sci. 10, 80–86 (2016). http://naun.org/cms.action?id=12152
Hao, W., Meng, L., Veelenturf, L., Long, S., Corman, F., Niu, X.: Optimal reassignment of passengers to trains following a broken train. In: Proceedings of the 2018 IEEE International Conference on Intelligent Rail Transport (IEEE ICIRT 2018). Marina Bay Sands, Singapore (2018). https://doi.org/10.1109/ICIRT.2018.8641524
Botte, M., Puca, D., Montella, B., D’Acierno, L.: An innovative methodology for managing service disruptions on regional rail lines. In: Proceedings of the 10th International Conference Environmental Engineering (ICEE 2017). Vilnius, Lithuania (2017). https://doi.org/10.3846/enviro.2017.134
Nash, A., Huerlimann, D.: Railroad simulation using opentrack. Comput. Railways 9, 45–54 (2004). https://doi.org/10.2495/CR040051
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Botte, M., D’Acierno, L., Gallo, M. (2019). Effects of Rolling Stock Unavailability on the Implementation of Energy-Saving Policies: A Metro System Application. In: Misra, S., et al. Computational Science and Its Applications – ICCSA 2019. ICCSA 2019. Lecture Notes in Computer Science(), vol 11620. Springer, Cham. https://doi.org/10.1007/978-3-030-24296-1_12
Download citation
DOI: https://doi.org/10.1007/978-3-030-24296-1_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-24295-4
Online ISBN: 978-3-030-24296-1
eBook Packages: Computer ScienceComputer Science (R0)