[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Effects of Rolling Stock Unavailability on the Implementation of Energy-Saving Policies: A Metro System Application

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2019 (ICCSA 2019)

Abstract

The recent world policies have shown the necessity of implementing suitable strategies, especially in urban contexts, in order to promote more sustainable transportation systems. In this context, the rail-based systems allow to achieve sustainable goals according to a threefold effect: reduction in externalities (such as congestion, accidents, air and noise pollution), increase in efficiency (in terms of operational cost per real/potential carried passenger), and delocalization of energy production centres (large industrial plants out of population centres producing with optimal yields). Positive environmental aspects of the rail and metro systems may be further amplified by implementing Energy-Saving Strategies (ESSs) based on the adoption of suitable driving profiles and/or the installation of onboard/wayside recovery devices. In this context, we investigate the effects of rolling-stock unavailability (for breakdowns, maintenance or under-sized fleet) on the effectiveness of ESSs within a multi-objective framework which combines the reduction in energy consumption with a passenger-oriented perspective. A real metro line in the south of Italy has been analysed as case-study in order to show the feasibility of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 67.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 84.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Caprara, A., Kroon, L., Monaci, M., Peeters, M., Toth, P.: Passenger railway optimization. Handbooks Oper. Res. Manag. Sci. 14, 129–187 (2007). https://doi.org/10.1016/S0927-0507(06)14003-7

    Article  Google Scholar 

  2. D’Acierno, L., Botte, M., Montella, B.: Assumptions and simulation of passenger behaviour on rail platforms. Int. J. Transp. Dev. Integr. 2(2), 123–135 (2018). https://doi.org/10.2495/TDI-V2-N2-123-135

    Article  Google Scholar 

  3. D’Acierno, L., Botte, M., Placido, A., Caropreso, C., Montella, B.: Methodologyfor determining dwell times consistent with passenger flows in the case ofmetro services. Urban Rail Transit 3(2), 73–89 (2017). https://doi.org/10.1007/s40864-017-0062-4

    Article  Google Scholar 

  4. Botte, M., D’Acierno, L.: Dispatching and rescheduling tasks and theirinteractions with travel demand and the energy domain: models and algorithms. Urban Rail Transit 4(4), 163–197 (2018). https://doi.org/10.1007/s40864-018-0090-8

    Article  Google Scholar 

  5. D’Acierno, L., Botte, M.: An analytical approach for determining reserve timeson metro systems. In: Proceedings of the 17th IEEE International Conferenceon Environment and Electrical Engineering (IEEE EEEIC 2017) and 1ndIndustrial and Commercial Power Systems Europe (I&CPS 2017). Milan, Italy (2017). https://doi.org/10.0.4.85/EEEIC.2017.7977519

  6. D’Acierno, L., Botte, M., Gallo, M., Montella, B.: Defining reserve times for metro systems: an analytical approach. J. Adv. Transp. 2018, 1–15 (2018). https://doi.org/10.1155/2018/5983250

    Article  Google Scholar 

  7. D’Acierno, L., Botte, M.: Passengers’ satisfaction in the case of energy-saving strategies: a rail system application. In: Proceedings of the 18th IEEE International Conference on Environment and Electrical Engineering (IEEE EEEIC 2018) and 2nd Industrial and Commercial Power Systems Europe (I&CPS 2018). Palermo, Italy (2018). https://doi.org/10.1109/EEEIC.2018.8494575

  8. D’Acierno, L., Botte, M.: A passenger-oriented optimization model for implementing energy-saving strategies in railway contexts. Energies 11(11), 1–25 (2018). https://doi.org/10.3390/en11112946

    Article  Google Scholar 

  9. Gonzalez-Gil, A., Palacin, R., Batty, P.: Sustainable urban rail systems: strategies and technologies for optimal management of regenerative braking energy. Energy Convers. Manage. 75, 374–388 (2013). https://doi.org/10.1016/j.enconman.2013.06.039

    Article  Google Scholar 

  10. Ghavihaa, N., Campilloa, J., Bohlinb, M., Dahlquista, E.: Review of application of energy storage devices in railway transportation. Energy Procedia 105, 4561–4568 (2017). https://doi.org/10.1016/j.egypro.2017.03.980

    Article  Google Scholar 

  11. Song, R., Yuan, T., Yang, J., He, H.: Simulation of braking energy recovery for the metro vehicles based on the traction experiment system. Simulation 93, 1099–1112 (2017). https://doi.org/10.1177/0037549717726146

    Article  Google Scholar 

  12. Yan, X., Cai, B., Ning, B., ShangGuan, W.: Online distributed cooperative model predictive control of energy-saving trajectory planning for multiple high-speed train movements. Transp. Res. Part C 69, 60–78 (2016). https://doi.org/10.1016/j.trc.2016.05.019

    Article  Google Scholar 

  13. Huang, Y., Ma, X., Su, S., Tang, T.: Optimization of train operation in multiple interstations with multi-population genetic algorithm. Energies 8, 14311–14329 (2015). https://doi.org/10.3390/en81212433

    Article  Google Scholar 

  14. De Martinis, V., Weidmann, U.: Definition of energy-efficient speed profiles within rail traffic by means of supply design models. Res. Transp. Econ. 54, 41–50 (2015). https://doi.org/10.1016/j.retrec.2015.10.024

    Article  Google Scholar 

  15. Sicre, C., Cucala, A., Fernandez, A., Lukaszewicz, P.: Modeling and optimizing energy-efficient manual driving on high-speed lines. IEEJ Trans. Electr. Electron. Eng. 7, 633–640 (2012). https://doi.org/10.1002/tee.21782

    Article  Google Scholar 

  16. Zhao, N., Roberts, C., Hillmansen, S., Tian, Z., Weston, P., Chen, L.: An integrated metro operation optimization to minimize energy consumption. Transp. Res. Part C 75, 168–182 (2017). https://doi.org/10.1016/j.trc.2016.12.013

    Article  Google Scholar 

  17. De Martinis, V., Corman, F.: Data-driven perspectives for energy efficient operations in railway systems: current practices and future opportunities. Transp. Res. Part C 95, 679–697 (2018). https://doi.org/10.1016/j.trc.2018.08.008

    Article  Google Scholar 

  18. Corman, F., Meng, L.: A review of online dynamic models and algorithms for railway traffic management. IEEE Trans. Intell. Transp. Syst. 16(3), 1274–1284 (2015). https://doi.org/10.1109/TITS.2014.2358392

    Article  Google Scholar 

  19. Goverde, R.: Punctuality of Railway Operations and Timetable Stability Analysis. Delft University of Technology, Delft, The Netherlands (2005)

    Google Scholar 

  20. Caimi, G., Fuchsberger, M., Laumanns, M., Lüthi, M.: A model predictive control approach for discrete-time rescheduling in complex, central railway station areas. Comput. Oper. Res. 39(11), 2578–2593 (2012). https://doi.org/10.1016/j.cor.2012.01.003

    Article  MATH  Google Scholar 

  21. Mazzarello, M., Ottaviani, E.: A traffic management system for real-time traffic optimization in railways. Transp. Res. Part B 41(2), 246–274 (2007). https://doi.org/10.1016/j.trb.2006.02.005

    Article  Google Scholar 

  22. Quaglietta, E., Corman, F., Goverde, R.: Stability analysis of railway dispatching plans in a stochastic and dynamic environment. J. Rail Transp. Plann. Manag. 3(4), 137–149 (2013). https://doi.org/10.1016/j.jrtpm.2013.10.009

    Article  Google Scholar 

  23. Törnquist, J.: Railway traffic disturbance management-an experimental analysis of disturbance complexity, management objectives and limitations in planning horizon. Transp. Res. Part A 41(3), 249–266 (2007). https://doi.org/10.1016/j.tra.2006.05.003

    Article  Google Scholar 

  24. Corman, F., D’Ariano, A., Pacciarelli, D., Pranzo, M.: Bi-objective conflict detection and resolution in railway traffic management. Transp. Res. Part C 20(1), 79–94 (2012). https://doi.org/10.1016/j.trc.2010.09.009

    Article  Google Scholar 

  25. D’Ariano, A., Pacciarelli, D., Samà, M., Corman, F.: Microscopic delay management: Minimizing train delays and passenger travel times during real-time railway traffic control. In: Proceedings of the 5th IEEE International Conference on Models and Technologies for Intelligent Transportation Systems (IEEE MT-ITS 2017). Naples, Italy (2017). https://doi.org/10.1109/MTITS.2017.8005686

  26. Xu, P., Corman, F., Peng, Q., Luan, X.: A timetable rescheduling approach and transition phases for high speed railway traffic during disruptions. Transp. Res. Rec. 2607(1), 82–92 (2017). https://doi.org/10.3141/2607-11

    Article  Google Scholar 

  27. Botte, M., D’Acierno, L., Montella, B., Placido, A.: A stochastic approach for assessing intervention strategies in the case of metro system failures. In: Proceedings of 2015 AEIT Annual Conference (AEIT 2015). Naples, Italy (2015). https://doi.org/10.1109/AEIT.2015.7415258

  28. D’Acierno, L., Placido, A., Botte, M., Gallo, M., Montella, B.: Defining robust recovery solutions for preserving service quality during rail/metro systems failure. Int. J. Supply Oper. Manag. 3(3), 1351–1372 (2016). https://doi.org/10.22034/2016.3.01

    Article  Google Scholar 

  29. Larsen, R., Pranzo, M., D’Ariano, A., Corman, F., Pacciarelli, D.: Susceptibility of optimal train schedules to stochastic disturbances of process times. Flex. Serv. Manuf. J. 26, 466–489 (2014). https://doi.org/10.1007/s10696-013-9172-9

    Article  Google Scholar 

  30. Davydov, B., Chebotarev, V., Kablukova, K.: Stochastic model for the real-time train rescheduling. Int. J. Transp. Dev. Integr. 1(3), 307–317 (2017). https://doi.org/10.2495/TDI-V1-N3-307-317

    Article  Google Scholar 

  31. Li, X., Shou, B., Ralescu, D.: Train rescheduling with stochastic recovery time: a new track-backup approach. IEEE Trans. Syst. Man Cybern. Syst. 44(9), 1216–1233 (2014). https://doi.org/10.1109/TSMC.2014.2301140

    Article  Google Scholar 

  32. Kecman, P., Corman, F., Meng, L.: Train delay evolution as a stochastic process. In: Proceedings of the 6th International Conference on Railway Operations Modelling and Analysis (RailTokyo 2015). Narashino, Japan (2015)

    Google Scholar 

  33. Kecman, P., Corman, F., Peterson, A., Joborn, M.: Stochastic prediction of train delays in real-time using bayesian networks. In: Proceedings of Conference on Advanced Systems in Public Transport (CASPT 2015). Rotterdam, The Netherlands (2015). https://doi.org/10.3929/ethz-b-000175478

  34. Meng, L., Zhou, X.: Robust single-track train dispatching model under a dynamic and stochastic environment: a scenario-based rolling horizon approach. Transp. Res. Part B 45(7), 1080–1102 (2011). https://doi.org/10.1016/j.trb.2011.05.001

    Article  Google Scholar 

  35. Yin, J., Tang, T., Yang, L., Gao, Z., Ran, B.: Energy-efficient metro train rescheduling with uncertain time-variant passenger demands: an approximate dynamic programming approach. Transp. Res. Part B 91, 178–210 (2016). https://doi.org/10.1016/j.trb.2016.05.009

    Article  Google Scholar 

  36. Louwerse, I., Huisman, D.: Adjusting a railway timetable in case of partial or complete blockades. Eur. J. Oper. Res. 235, 583–593 (2014). https://doi.org/10.1016/j.ejor.2013.12.020

    Article  MathSciNet  MATH  Google Scholar 

  37. Zhan, S., Kroon, L., Veelenturf, L., Wagenaar, J.: Real-time high-speed train rescheduling in case of a complete blockage. Transp. Res. Part B 78, 182–201 (2015). https://doi.org/10.1016/j.trb.2015.04.001

    Article  Google Scholar 

  38. Durmus, M., Takai, S., Söylemez, M.: Fault diagnosis in fixed-block railway signaling systems: a discrete event systems approach. IEEJ Trans. Electr. Electron. Eng. 9(5), 523–531 (2014). https://doi.org/10.1002/tee.22001

    Article  Google Scholar 

  39. D’Acierno, L., Placido, A., Botte, M., Gallo, M., Montella, B.: A methodological approach for managing rail disruptions with different perspectives. Int. J. Math. Models Meth. Appl. Sci. 10, 80–86 (2016). http://naun.org/cms.action?id=12152

    Google Scholar 

  40. Hao, W., Meng, L., Veelenturf, L., Long, S., Corman, F., Niu, X.: Optimal reassignment of passengers to trains following a broken train. In: Proceedings of the 2018 IEEE International Conference on Intelligent Rail Transport (IEEE ICIRT 2018). Marina Bay Sands, Singapore (2018). https://doi.org/10.1109/ICIRT.2018.8641524

  41. Botte, M., Puca, D., Montella, B., D’Acierno, L.: An innovative methodology for managing service disruptions on regional rail lines. In: Proceedings of the 10th International Conference Environmental Engineering (ICEE 2017). Vilnius, Lithuania (2017). https://doi.org/10.3846/enviro.2017.134

  42. Nash, A., Huerlimann, D.: Railroad simulation using opentrack. Comput. Railways 9, 45–54 (2004). https://doi.org/10.2495/CR040051

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marilisa Botte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Botte, M., D’Acierno, L., Gallo, M. (2019). Effects of Rolling Stock Unavailability on the Implementation of Energy-Saving Policies: A Metro System Application. In: Misra, S., et al. Computational Science and Its Applications – ICCSA 2019. ICCSA 2019. Lecture Notes in Computer Science(), vol 11620. Springer, Cham. https://doi.org/10.1007/978-3-030-24296-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24296-1_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24295-4

  • Online ISBN: 978-3-030-24296-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics