Abstract
The performance of learning algorithms relies on factors such as the training strategy, the parameter tuning approach, and data complexity; in this scenario, extracted features play a fundamental role. Since not all the features maintain useful information, they can add noise, thus decreasing the performance of the algorithms. To address this issue, a variety of techniques such as feature ex-traction, feature engineering and feature selection have been developed, most of which fall into the unsupervised learning category. This study explores the generation of such features, using a set of k encoder layers, which are used to produce a low dimensional feature set F. The encoder layers were trained using a two-layer depth sparse autoencoder model, where PCA was used to estimate the right number of hidden units in the first layer. Then, a set of four algorithms, which belong to the gradient boosting and ensemble families were trained using the generated features. Finally, a performance comparison, using the encoder features against the original features was made. The results show that by using the reduced features it is possible to achieve equal or better results. Also, the approach improves more with highly imbalanced data sets.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Martínez-Romo, J.C., Luna-rosas, F.J., Mora-gonzález, M., De Luna-ortega, C.A.: Optimal feature generation with genetic algorithms and FLDR in a restricted-vocabulary speech recognition system. In: Bio-Inspired Computational Algorithms and Their Applications, pp. 235–262 (2012). https://doi.org/10.5772/36135
Cheng, W., Kasneci, G., Graepel, T., Stern, D., Herbrich, R.: Automated feature generation from structured knowledge. In: Proceedings of the 20th ACM International Conference on Information and Knowledge Management, CIKM 2011, p. 1395 (2011). https://doi.org/10.1145/2063576.2063779
Katz, G., Shin, E.C.R., Song, D.: ExploreKit: automatic feature generation and selection. In: Proceedings - IEEE 16th International Conference on Data Mining (ICDM), pp. 979–984 (2016). https://doi.org/10.1109/ICDM.2016.0123
Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323, 533–536 (1986). https://doi.org/10.1038/323533a0
Ng, A.: Sparse autoencoder. In: CS294A Lecture Notes, pp. 1–19 (2011). http://web.stanford.edu/class/cs294a/sae/sparseAutoencoderNotes.pdf
Kingma, D.P., Welling, M.: Auto-encoding variational Bayes, pp. 1–14 (2013). https://arxiv.org/abs/1312.6114
Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.-A.: Extracting and composing robust features with denoising autoencoders. In: Proceedings of 25th Annual International Conference on Machine Learning, ICML 2008, pp. 1096–1103 (2008). https://doi.org/10.1145/1390156.1390294
Baldi, P.: Autoencoders, unsupervised learning, and deep architectures. In: Guyon, I., Dror, G., Lemaire, V., Taylor, G.W., Silver, D.L. (eds.) ICML Unsupervised and Transfer Learning, pp. 37–50 (2012). JMLR.org
Yu, W., Zeng, G., Luo, P., Zhuang, F., He, Q., Shi, Z.: Embedding with autoencoder regularization. In: Blockeel, H., Kersting, K., Nijssen, S., Železný, F. (eds.) ECML PKDD 2013. LNCS (LNAI), vol. 8190, pp. 208–223. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40994-3_14
Bosch, N., Paquette, L.: Unsupervised deep autoencoders for feature extraction with educational data. In: Deep Learning with Educational Data Workshop at the 10th International Conference on Educational Data Mining (2017)
Meng, Q., Catchpoole, D., Skillicom, D., Kennedy, P.J.: Relational autoencoder for feature extraction. In: Proceedings of International Joint Conference Neural Networks, May 2017, pp. 364–371 (2017). https://doi.org/10.1109/ijcnn.2017.7965877
DeVries, T., Taylor, G.W.: Dataset augmentation in feature space, pp. 1–12 (2017). https://arxiv.org/abs/1702.05538v1
Yousefi-azar, M., Varadharajan, V., Hamey, L., Tupakula, U.: Autoencoder-based feature learning for cyber security applications. In: International Joint Conference on Neural Networks 2017 (IJCNN), pp. 3854–3861 (2017). https://doi.org/10.1109/IJCNN.2017.7966342
Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35, 1798–1828 (2013). https://doi.org/10.1109/TPAMI.2013.50
Makhzani, A., Frey, B.: k-sparse autoencoders (2013). https://arxiv.org/abs/1312.5663
Ju, Y., Guo, J., Liu, S.: A deep learning method combined sparse autoencoder with SVM. In: 2015 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery, pp. 257–260. IEEE (2015). https://doi.org/10.1109/CyberC.2015.39
Kampffmeyer, M., Løkse, S., Bianchi, F.M., Jenssen, R., Livi, L.: Deep kernelized autoencoders. In: Sharma, P., Bianchi, F. (eds.) Image Analysis. SCIA 2017. LNCS, vol. 10269, pp. 419–430. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59126-1_35
Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)
Chollet, F.: Keras. GitHub Repos (2015). https://keras.io/
Olson, R.S., La Cava, W., Orzechowski, P., Urbanowicz, R.J., Moore, J.H.: PMLB: a large benchmark suite for machine learning evaluation and comparison. BioData Min. 10, 36 (2017). https://doi.org/10.1186/s13040-017-0154-4
Ke, G., Meng, Q., Wang, T., Chen, W., Ma, W., Liu, T.-Y.: LightGBM: a highly efficient gradient boosting decision tree. Adv. Neural. Inf. Process. Syst. 30, 3148–3156 (2017)
Dorogush, A.V., Ershov, V., Yandex, A.G.: CatBoost: gradient boosting with categorical features support. In: Workshop on ML System, NIPS 2017, pp. 1–7 (2017)
Hastie, T., Rosset, S., Zhu, J., Zou, H.: Multi-class AdaBoost. Stat. Interface 2, 349–360 (2009). https://doi.org/10.4310/SII.2009.v2.n3.a8
Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001). https://doi.org/10.1023/A:1010933404324
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Aguilar, L., Aguilar, L.A. (2018). Analysis of Encoder Representations as Features Using Sparse Autoencoders in Gradient Boosting and Ensemble Tree Models. In: Simari, G.R., Fermé, E., Gutiérrez Segura, F., Rodríguez Melquiades, J.A. (eds) Advances in Artificial Intelligence – IBERAMIA 2018. IBERAMIA 2018. Lecture Notes in Computer Science(), vol 11238. Springer, Cham. https://doi.org/10.1007/978-3-030-03928-8_13
Download citation
DOI: https://doi.org/10.1007/978-3-030-03928-8_13
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-03927-1
Online ISBN: 978-3-030-03928-8
eBook Packages: Computer ScienceComputer Science (R0)