[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content
  • 620 Accesses

Abstract

A contraction is an operator T on a formed space χ such that ‖T‖≤1. Equivalently, such that ‖T x ‖≤‖x‖for every x in χ. If T is a contraction on a Hilbert space Η, then \(\left\{ {{{T}^{{*n}}}{{T}^{{*n}}}} \right\}\)is a decreasing sequence of nonnegative contractions. In fact, take an arbitrary positive integer n. Since \( {T^{*n}} = {T^{n*}}{\text{ we get }}{T^{*n}}{T^n}{\text{ }}\underline > {\text{ O and}}\left\| {{T^{*n}}{T^n}} \right\|\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{ < } \left\| {{T^{*n}}} \right\|\left\| {{T^n}} \right\|\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{ < } {\left\| T \right\|^{2n}}\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{ < } 1.{\text{Moreover}},\left\langle {{T^{*n + 1}}{T^{n + 1}}x;x} \right\rangle = {\left\| {{T^{n + 1}}x} \right\|^2}\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{ < } \;{\left\| {{T^n}x} \right\|^2} = \left\langle {{T^{*n}}{T^n}x;x} \right\rangle \) for every x in Η Thus \(\left\{ {{{T}^{{*n}}}{{T}^{{*n}}}} \right\}\) is a bounded monotone sequence of self-adjoint operators, and therefore it converges strongly (Problem 3.5). Summing up: if T is a contraction on a Hilbert space Η, then

$${T^{*n}}{T^n}\mathop \to \limits^s A,$$

for some operator A on Η ;the strong limit of \(\left\{{{T^{*n}}{T^{*n}}}\right\}\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Birkhäuser Boston

About this chapter

Cite this chapter

Kubrusly, C.S. (2003). Decompositions. In: Hilbert Space Operators. Birkhäuser Boston. https://doi.org/10.1007/978-1-4612-2064-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2064-0_6

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-0-8176-3242-7

  • Online ISBN: 978-1-4612-2064-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics