Abstract
A contraction is an operator T on a formed space χ such that ‖T‖≤1. Equivalently, such that ‖T x ‖≤‖x‖for every x in χ. If T is a contraction on a Hilbert space Η, then \(\left\{ {{{T}^{{*n}}}{{T}^{{*n}}}} \right\}\)is a decreasing sequence of nonnegative contractions. In fact, take an arbitrary positive integer n. Since \( {T^{*n}} = {T^{n*}}{\text{ we get }}{T^{*n}}{T^n}{\text{ }}\underline > {\text{ O and}}\left\| {{T^{*n}}{T^n}} \right\|\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{ < } \left\| {{T^{*n}}} \right\|\left\| {{T^n}} \right\|\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{ < } {\left\| T \right\|^{2n}}\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{ < } 1.{\text{Moreover}},\left\langle {{T^{*n + 1}}{T^{n + 1}}x;x} \right\rangle = {\left\| {{T^{n + 1}}x} \right\|^2}\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{ < } \;{\left\| {{T^n}x} \right\|^2} = \left\langle {{T^{*n}}{T^n}x;x} \right\rangle \) for every x in Η Thus \(\left\{ {{{T}^{{*n}}}{{T}^{{*n}}}} \right\}\) is a bounded monotone sequence of self-adjoint operators, and therefore it converges strongly (Problem 3.5). Summing up: if T is a contraction on a Hilbert space Η, then
for some operator A on Η ;the strong limit of \(\left\{{{T^{*n}}{T^{*n}}}\right\}\).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Author information
Authors and Affiliations
Rights and permissions
Copyright information
© 2003 Birkhäuser Boston
About this chapter
Cite this chapter
Kubrusly, C.S. (2003). Decompositions. In: Hilbert Space Operators. Birkhäuser Boston. https://doi.org/10.1007/978-1-4612-2064-0_6
Download citation
DOI: https://doi.org/10.1007/978-1-4612-2064-0_6
Publisher Name: Birkhäuser Boston
Print ISBN: 978-0-8176-3242-7
Online ISBN: 978-1-4612-2064-0
eBook Packages: Springer Book Archive