[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Fast Nonnegative Tensor Factorization with an Active-Set-Like Method

  • Chapter
High-Performance Scientific Computing

Abstract

We introduce an efficient algorithm for computing a low-rank nonnegative CANDECOMP/PARAFAC (NNCP) decomposition. In text mining, signal processing, and computer vision among other areas, imposing nonnegativity constraints to the low-rank factors of matrices and tensors has been shown an effective technique providing physically meaningful interpretation. A principled methodology for computing NNCP is alternating nonnegative least squares, in which the nonnegativity-constrained least squares (NNLS) problems are solved in each iteration. In this chapter, we propose to solve the NNLS problems using the block principal pivoting method. The block principal pivoting method overcomes some difficulties of the classical active method for the NNLS problems with a large number of variables. We introduce techniques to accelerate the block principal pivoting method for multiple right-hand sides, which is typical in NNCP computation. Computational experiments show the state-of-the-art performance of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.cs.ubc.ca/~mpf/2008-computing-nntf.html.

  2. 2.

    http://vision.ucsd.edu/~leekc/ExtYaleDatabase/ExtYaleB.html.

  3. 3.

    http://www.cs.nyu.edu/~roweis/data.html.

References

  1. Acar, E., Yener, B.: Unsupervised multiway data analysis: A literature survey. IEEE Trans. Knowl. Data Eng. 21(1), 6–20 (2009)

    Article  Google Scholar 

  2. Bader, B.W., Berry, M.W., Browne, M.: Discussion tracking in Enron email using PARAFAC. In: Survey of Text Mining II: Clustering, Classification, and Retrieval, pp. 147–163. Springer, Berlin (2008)

    Google Scholar 

  3. Bertsekas, D.P.: Nonlinear Programming. Scientific, Athena (1999)

    MATH  Google Scholar 

  4. Bro, R., De Jong, S.: A fast non-negativity-constrained least squares algorithm. J. Chem. 11, 393–401 (1997)

    Article  Google Scholar 

  5. Carroll, J.D., Chang, J.J.: Analysis of individual differences in multidimensional scaling via an N-way generalization of “Eckart-Young” decomposition. Psychometrika 35(3), 283–319 (1970)

    Article  MATH  Google Scholar 

  6. Carroll, J.D., Soete, G.D., Pruzansky, S.: Fitting of the latent class model via iteratively reweighted least squares CANDECOMP with nonnegativity constraints. In: Multiway data analysis, pp. 463–472. North-Holland, Amsterdam (1989). http://portal.acm.org/citation.cfm?id=120565.120614

    Google Scholar 

  7. Cichocki, A., Phan, A.H.: Fast local algorithms for large scale nonnegative matrix and tensor factorizations. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E92-A(3), 708–721 (2009)

    Article  Google Scholar 

  8. Cichocki, A., Zdunek, R., Amari, S.I.: Hierarchical ALS algorithms for nonnegative matrix and 3D tensor factorization. In: Lecture Notes in Computer Science, vol. 4666, pp. 169–176. Springer, Berlin (2007)

    Google Scholar 

  9. FitzGerald, D., Cranitch, M., Coyle, E.: Non-negative tensor factorisation for sound source separation. In: Proceedings of the Irish Signals and Systems Conference (2005)

    Google Scholar 

  10. Friedlander, M.P., Hatz, K.: Computing nonnegative tensor factorizations. Comput. Optim. Appl. 23(4), 631–647 (2008). doi:10.1080/10556780801996244

    MathSciNet  MATH  Google Scholar 

  11. Harshman, R.A.: Foundations of the PARAFAC procedure: Models and conditions for an “explanatory” multi-modal factor analysis. In: UCLA Working Papers in Phonetics, vol. 16, pp. 1–84 (1970)

    Google Scholar 

  12. Júdice, J.J., Pires, F.M.: A block principal pivoting algorithm for large-scale strictly monotone linear complementarity problems. Comput. Oper. Res. 21(5), 587–596 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kim, H., Park, H.: Sparse non-negative matrix factorizations via alternating non-negativity-constrained least squares for microarray data analysis. Bioinformatics 23(12), 1495–1502 (2007)

    Article  Google Scholar 

  14. Kim, H., Park, H.: Nonnegative matrix factorization based on alternating nonnegativity constrained least squares and active set method. SIAM J. Matrix Anal. Appl. 30(2), 713–730 (2008). doi:10.1137/07069239X

    Article  MathSciNet  MATH  Google Scholar 

  15. Kim, H., Park, H., Eldén, L.: Non-negative tensor factorization based on alternating large-scale non-negativity-constrained least squares. In: Proceedings of IEEE 7th International Conference on Bioinformatics and Bioengineering (BIBE07), vol. 2, pp. 1147–1151 (2007)

    Google Scholar 

  16. Kim, J., Park, H.: Sparse nonnegative matrix factorization for clustering. Tech. rep., Georgia Institute of Technology Technical Report GT-CSE-08-01 (2008)

    Google Scholar 

  17. Kim, J., Park, H.: Toward faster nonnegative matrix factorization: A new algorithm and comparisons. In: Proceedings of the 2008 Eighth IEEE International Conference on Data Mining (ICDM), pp. 353–362 (2008)

    Chapter  Google Scholar 

  18. Kim, J., Park, H.: Fast nonnegative matrix factorization: An active-set-like method and comparisons. SIAM J. Sci. Comput. 33, 3261 (2011)

    Article  Google Scholar 

  19. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51(3), 455–500 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lawson, C.L., Hanson, R.J.: Solving Least Squares Problems. Prentice Hall, New York (1974)

    MATH  Google Scholar 

  21. Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix factorization. Nature 401(6755), 788–791 (1999)

    Article  Google Scholar 

  22. Lee, D.D., Seung, H.S.: Algorithms for non-negative matrix factorization. In: Advances in Neural Information Processing Systems, vol. 13, pp. 556–562. MIT Press, Cambridge (2001)

    Google Scholar 

  23. Lim, L.H., Comon, P.: Nonnegative approximations of nonnegative tensors. J. Chem., 23(7–8), 432–441 (2009)

    Article  Google Scholar 

  24. Paatero, P.: A weighted non-negative least squares algorithm for three-way PARAFAC factor analysis. Chemom. Intell. Lab. Syst. 38(2), 223–242 (1997)

    Article  Google Scholar 

  25. Paatero, P.: The multilinear engine: A table-driven, least squares program for solving multilinear problems, including the n-way parallel factor analysis model. J. Comput. Graph. Stat. 8, 854–888 (1999)

    Article  MathSciNet  Google Scholar 

  26. Paatero, P., Tapper, U.: Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values. EnvironMetrics 5(1), 111–126 (1994)

    Article  Google Scholar 

  27. Shashua, A., Hazan, T.: Non-negative tensor factorization with applications to statistics and computer vision. In: ICML ’05: Proceedings of the 22nd International Conference on Machine Learning, pp. 792–799. ACM, New York (2005). doi: http://doi.acm.org/10.1145/1102351.1102451

    Chapter  Google Scholar 

  28. Van Benthem, M.H., Keenan, M.R.: Fast algorithm for the solution of large-scale non-negativity-constrained least squares problems. J. Chem. 18, 441–450 (2004). doi:10.1002/cem.889

    Article  Google Scholar 

  29. Welling, M., Weber, M.: Positive tensor factorization. Pattern Recognit. Lett. 22(12), 1255–1261 (2001). doi:10.1016/S0167-8655(01)00070-8

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The work in this chapter was supported in part by the National Science Foundation grants CCF-0732318, CCF-0808863, and CCF-0956517. Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingu Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Kim, J., Park, H. (2012). Fast Nonnegative Tensor Factorization with an Active-Set-Like Method. In: Berry, M., et al. High-Performance Scientific Computing. Springer, London. https://doi.org/10.1007/978-1-4471-2437-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2437-5_16

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2436-8

  • Online ISBN: 978-1-4471-2437-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics