Abstract
In this paper, we generalize from Euclidean spaces to Riemannian manifolds an important result in optimization that guarantees Riemannian quasi-Newton algorithms converge superlinearly.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Absil, P.A., Baker, C.G., Gallivan, K.A.: Trust-region methods on Riemannian manifolds. Found. Comput. Math. 7(3), 303–330 (2007) doi:10.1007/s10208-005-0179-9
Absil, P.-A., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Manifolds. Princeton University Press, New Jersey (2008)
Adler, R.L., Dedieu, J.P., Margulies, J.Y., Martens, M., Shub, M.: Newton’s method on Riemannian manifolds and a geometric model for the human spine. IMA J. Numer. Anal. 22(3), 359–390 (2002)
Baker, C.G.: Riemannian manifold trust-region methods with applications to eigenproblems. Ph.D. thesis, School of Computational Science, Florida State University (2008)
Dennis, J.E., Schnabel, R.B.: Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Springer, New Jersey (1983)
Dreisigmeyer, D.W.: Direct search algorithms over Riemannian manifolds (2006). Optimization Online 2007-08-1742
Edelman, A., Arias, T.A., Smith, S.T.: The geometry of algorithms with orthogonality constrains. SIAM J. Matrix Anal. Appl. 20(2), 303–353 (1998)
Gabay, D.: Minimizing a differentiable function over a differential manifold. J. Optim. Theory Appl. 37(2), 177–219 (1982)
Helmke, U., Moore, J.: Optimization and Dynamical Systems. Springer, Berlin (1994)
Qi, C.: Numerical optimization on Riemannian manifolds. Ph.D. thesis, Florida State University, Tallahassee, FL, USA (2011)
Smith, S.T.: Optimization techniques on Riemannian manifolds. In: Bloch, A. (ed.) Hamiltonian and Gradient Flows, Algorithms and Control. Fields Inst. Commun., vol. 3, pp. 113–136. Amer. Math. Soc., Providence (1994)
Yang, Y.: Globally convergent optimization algorithms on Riemannian manifolds: Uniform framework for unconstrained and constrained optimization. J. Optim. Theory Appl. 132(2), 245–265 (2007). doi:10.1007/s10957-006-9081-0
Acknowledgements
This paper presents research results of the Belgian Network DYSCO (Dynamical Systems, Control, and Optimization), funded by the Interuniversity Attraction Poles Programme, initiated by the Belgian State, Science Policy Office. The scientific responsibility rests with its authors.
This work was performed in part while the first author was a Visiting Professor at the Institut de mathématiques pures et appliquées (MAPA) at Université catholique de Louvain.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag London Limited
About this chapter
Cite this chapter
Gallivan, K.A., Qi, C., Absil, PA. (2012). A Riemannian Dennis-Moré Condition. In: Berry, M., et al. High-Performance Scientific Computing. Springer, London. https://doi.org/10.1007/978-1-4471-2437-5_14
Download citation
DOI: https://doi.org/10.1007/978-1-4471-2437-5_14
Publisher Name: Springer, London
Print ISBN: 978-1-4471-2436-8
Online ISBN: 978-1-4471-2437-5
eBook Packages: Computer ScienceComputer Science (R0)