Abstract
In this paper, we present an effective preconditioning technique for solving nonsymmetric saddle-point problems. In particular, we consider those saddle-point problems that arise in the numerical simulation of particulate flows—flow of solid particles in incompressible fluids, using mixed finite element discretization of the Navier–Stokes equations.
These indefinite linear systems are solved using a preconditioned Krylov subspace method with an indefinite preconditioner. This creates an inner–outer iteration, in which the inner iteration is handled via a preconditioned Richardson scheme. We provide an analysis of our approach that relates the convergence properties of the inner to the outer iterations. Also “optimal” approaches are proposed for the implicit construction of the Richardson’s iteration preconditioner. The analysis is validated by numerical experiments that demonstrate the robustness of our scheme, its lack of sensitivity to changes in the fluid–particle system, and its “scalability”.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Arrow, K., Hurwicz, L., Uzawa, H.: Studies in Nonlinear Programming. Stanford University Press, Stanford (1958)
Babuska, I.: The finite element method with Lagrangian multipliers. Numer. Math. 20, 179–192 (1973)
Baggag, A.: Linear system solvers in particulate flows. Ph.D. thesis, Department of Computer Science, University of Minnesota (2003)
Baggag, A., Sameh, A.: A nested iterative scheme for indefinite linear systems in particulate flows. Comput. Methods Appl. Mech. Eng. 193, 1923–1957 (2004)
Bank, R.E., Dupont, T., Yserentant, H.: The hierarchical basis multigrid method. Numer. Math. 52, 427–458 (1988)
Bank, R.E., Welfert, B.D., Yserentant, H.: A class of iterative methods for solving saddle point problems. Numer. Math. 55, 645–666 (1990)
Barnard, S., Grote, M.: A block version of the SPAI preconditioner. In: Hendrickson, B., Yelick, K., Bishof, C. (eds.) Proceedings of the Ninth SIAM Conference on Parallel Processing for Scientific Computing, March 22–24. SIAM, Philadelphia (1999). CD-ROM
Benzi, M., Golub, G.H.: An iterative method for generalized saddle point problems. SIAM J. Matrix Anal. (2012, to appear)
Braess, D., Sarazin, R.: An efficient smoother for the stokes problem. Appl. Numer. Math. 23, 3–19 (1997)
Bramble, J.H., Leyk, Z., Pasciak, J.E.: Iterative schemes for non-symmetric and indefinite elliptic boundary value problems. Math. Comput. 60, 1–22 (1993)
Bramble, J.H., Pasciak, J.E.: A preconditioning technique for indefinite systems resulting from mixed approximations of elliptic problems. Math. Comput. 50, 1–18 (1988)
Bramble, J.H., Pasciak, J.E.: Iterative techniques for time dependent Stokes problems. Comput. Math. Appl. 33, 13–30 (1997)
Bramble, J.H., Pasciak, J.E., Vassilev, A.T.: Analysis of the inexact Uzawa algorithm for saddle point problems. SIAM J. Numer. Anal. 34, 1072–1092 (1997)
Bramble, J.H., Pasciak, J.E., Vassilev, A.T.: Uzawa type algorithms for nonsymmetric saddle point problems. Math. Comput. 69, 667–689 (2000)
Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, New York (1991). ISBN 3-540-97582-9
Dyn, N., Ferguson, W.: The numerical solution of equality-constrained quadratic programming problems. Math. Comput. 41, 165–170 (1983)
Elman, H., Silvester, D.: Fast nonsymmetric iterations and preconditioning for Navier–Stokes equations. SIAM J. Sci. Comput. 17, 33–46 (1996)
Elman, H.C.: Multigrid and Krylov subspace methods for the discrete Stokes equations. Tech. Rep. 3302, Institute for Advanced Computer Studies (1994)
Elman, H.C.: Perturbation of eigenvalues of preconditioned Navier–Stokes operators. SIAM J. Matrix Anal. Appl. 18, 733–751 (1997)
Elman, H.C.: Preconditioning for the steady-state Navier–Stokes equations with low viscosity. SIAM J. Sci. Comput. 20, 1299–1316 (1999)
Elman, H.C.: Preconditioners for saddle point problems arising in computational fluid dynamics. Appl. Numer. Math. 43, 75–89 (2002)
Elman, H.C., Golub, G.H.: Inexact and preconditioned Uzawa algorithms for saddle point problems. SIAM J. Numer. Anal. 31, 1645–1661 (1994)
Elman, H.C., Silvester, D.J., Wathen, A.J.: Iterative methods for problems in computational fluid dynamics. In: Chan, R., Chan, T., Golub, G. (eds.) Iterative Methods in Scientific Computing. Springer, Singapore (1997)
Elman, H.C., Silvester, D.J., Wathen, A.J.: Performance and analysis of saddle point preconditioners for the discrete steady-state Navier–Stokes equations. Numer. Math. 90, 641–664 (2002)
Falk, R.: An analysis of the finite element method using Lagrange multipliers for the stationary Stokes equations. Math. Comput. 30, 241–269 (1976)
Falk, R., Osborn, J.: Error estimates for mixed methods. RAIRO. Anal. Numér. 14, 249–277 (1980)
Fischer, B., Ramage, A., Silvester, D., Wathen, A.: Minimum residual methods for augmented systems. BIT Numer. Math. 38, 527–543 (1998)
Gatica, G.N., Heuer, N.: Conjugate gradient method for dual-dual mixed formulation. Math. Comput. 71, 1455–1472 (2001)
Girault, V., Raviart, P.: Finite Element Approximation of the Navier–Stokes Equations. Lecture Notes in Math., vol. 749. Springer, New York (1981)
Glowinski, R., Pan, T.W., Périaux, J.: Distributed Lagrange multiplier methods for incompressible viscous flow around moving rigid bodies. Comput. Methods Appl. Mech. Eng. 151, 181–194 (1998)
Golub, G., Wathen, A.: An iteration for indefinite systems and its application to the Navier–Stokes equations. SIAM J. Sci. Comput. 19, 530–539 (1998)
Golub, G., Wu, X., Yuan, J.Y.: SOR-like methods for augmented systems. BIT Numer. Math. 41, 71–85 (2001)
Grote, M., Huckle, T.: Parallel preconditioning with sparse approximate inverses. SIAM J. Sci. Comput. 18, 838–853 (1997)
Hu, H.: Direct simulation of flows of solid-liquid mixtures. Int. J. Multiph. Flow 22, 335–352 (1996)
Johnson, A.A., Tezduyar, T.E.: Simulation of multiple spheres falling in a liquid-filled tube. Comput. Methods Appl. Mech. Eng. 134, 351–373 (1996)
Johnson, A.A., Tezduyar, T.E.: 3D simulation of fluid–particle interactions with the number of particles reaching 100. Comput. Methods Appl. Mech. Eng. 145, 301–321 (1997)
Johnson, A.A., Tezduyar, T.E.: Advanced mesh generation and update methods for 3D flow simulations. Comput. Mech. 23, 130–143 (1999)
Johnson, A.A., Tezduyar, T.E.: Methods for 3D computation of fluid-object interactions in spatially-periodic flows. Comput. Methods Appl. Mech. Eng. 190, 3201–3221 (2001)
Keller, C., Gould, N.I.M., Wathen, A.J.: Constraint preconditioning for indefinite linear systems. SIAM J. Matrix Anal. Appl. 21, 1300–1317 (2000)
Klawonn, A.: An optimal preconditioner for a class of saddle point problems with a penalty term. SIAM J. Sci. Comput. 19, 540–552 (1998)
Klawonn, A., Starke, G.: Block triangular preconditioners for nonsymmetric saddle point problems: Field-of-values analysis. Numer. Math. 81, 577–594 (1999)
Knepley, M.: Parallel simulation of the particulate flow problem. Ph.D. thesis, Department of Computer Science, Purdue University (2000)
Knepley, M., Sarin, V., Sameh, A.: Parallel simulation of particulate flows. Appeared in Fifth Intl. Symp. on Solving Irregular Structured Problems in Parallel, IRREGULAR 98, LNCS, No. 1457, pp. 226–237, Springer (1998)
Krzyzanowski, P.: On block preconditioners for nonsymmetric saddle point problems. SIAM J. Sci. Comput. 23, 157–169 (2001)
Little, L., Saad, Y.: Block LU preconditioners for symmetric and nonsymmetric saddle point problems. Tech. Rep. 1999-104, Minnesota Supercomputer Institute, University of Minnesota (1999)
Lou, G.: Some new results for solving linear systems arising from computational fluid dynamics problems. Ph.D. thesis, Department of Computer Science, University of Illinois U-C (1992)
Luks̃an, L., Vlc̃ek, J.: Indefinitely preconditioned inexact Newton method for large sparse equality constrained nonlinear programming problems. Numer. Linear Algebra Appl. 5, 219–247 (1998)
Maury, B.: Characteristics ALE method for the unsteady 3D Navier–Stokes equations with a free surface. Comput. Fluid Dyn. J. 6, 175–188 (1996)
Maury, B.: A many-body lubrication model. C. R. Acad. Sci. Paris 325, 1053–1058 (1997)
Maury, B.: Direct simulations of 2D fluid–particle flows in biperiodic domains. J. Comput. Phys. 156, 325–351 (1999)
Maury, B., Glowinski, R.: Fluid–particle flow: a symmetric formulation. C. R. Acad. Sci. Paris 324, 1079–1084 (1997)
Murphy, M.F., Golub, G.H., Wathen, A.J.: A note on preconditioning for indefinite linear systems. SIAM J. Sci. Comput. 21, 1969–1972 (2000)
Ortega, J.M.: Numerical Analysis: a Second Course. Computer Science and Applied Mathematics Series. Academic Press, San Diego (1972)
Perugia, I., Simoncini, V.: An optimal indefinite preconditioner for mixed finite element method. Tech. Rep. 1098, Department of Mathematics, Università de Bologna, Italy (1998)
Perugia, I., Simoncini, V.: Block-diagonal and indefinite symmetric preconditioners for mixed finite element formulations. Numer. Linear Algebra Appl. 7, 585–616 (2000)
Queck, W.: The convergence factor of preconditioned algorithms of the Arrow-Hurwicz type. SIAM J. Numer. Anal. 26, 1016–1030 (1989)
Rusten, T., Winther, R.: A preconditioned iterative method for saddle point problem. SIAM J. Matrix Anal. Appl. 13, 887–904 (1992)
Saad, Y.: A flexible inner–outer preconditioned GMRES algorithm. SIAM J. Sci. Comput. 14, 461–469 (1993)
Saad, Y., Schultz, M.: GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7, 856–869 (1986)
Saad, Y., Suchomel, B.: ARMS: an algebraic recursive multilevel solver for general sparse linear systems. Numer. Linear Algebra Appl. 9, 359–378 (2002)
Sameh, A., Baggag, A.: Parallelism in iterative linear system solvers. In: Proceedings of the Sixth Japan-US Conference on Flow Simulation and Modeling, April 1, 2002
Sameh, A., Baggag, A., Wang, X.: Parallel nested iterative schemes for indefinite linear systems. In: Mang, H.A., Rammerstorfer, F.G., Eberhardsteiner, J. (eds.) Proceedings of the Fifth World Congress on Computational Mechanics, (WCCM V). Vienna University of Technology, Austria, July 7–12, 2002. ISBN 3-9501554-0-6
Silvester, D., Elman, H., Kay, D., Wathen, A.: Efficient preconditioning of the linearized Navier–Stokes equations for incompressible flow. J. Comput. Appl. Math. 128, 261–279 (2001)
Silvester, D., Wathen, A.: Fast iterative solution of stabilized Stokes systems. part II: Using general block preconditioners. SIAM J. Numer. Anal. 31, 1352–1367 (1994)
Silvester, D., Wathen, A.: Fast and robust solvers for time-discretized incompressible Navier–Stokes equations. Tech. Rep. 27, Department of Mathematics, University of Manchester (1995)
Simoncini, V., Szyld, D.: Flexible inner–outer Krylov subspace methods. SIAM J. Numer. Anal. 40, 2219–2239 (2003)
Simoncini, V., Szyld, D.: Theory of inexact Krylov subspace methods and applications to scientific computing. SIAM J. Sci. Comput. 25, 454–477 (2003)
Stewart, G.W.: Introduction to Matrix Computations. Academic Press, San Diego (1973)
Tezduyar, T.E.: Stabilized finite element formulations for incompressible flow computations. Adv. Appl. Mech. 28, 1–44 (1991)
Vanderstraeten, D., Knepley, M.: Parallel building blocks for finite element simulations: Application to solid-liquid mixture flows. In: Emerson, D., Ecer, A., Periaux, J., Satofuka, N. (eds.) Proceedings of Parallel CFD’99 Conf.: Recent Developments and Advances Using Parallel Computers, pp. 133–139. Academic Press, Manchester (1997)
Verfürth, R.: A combined conjugate gradient-multigrid algorithm for the numerical solution of the Stokes problem. IMA J. Numer. Anal. 4, 441–455 (1984)
Verfürth, R.: A posteriori error estimators for the Stokes equations. Numer. Math. 55, 309–325 (1989)
Wathen, A., Silvester, D.: Fast iterative solution of stabilized Stokes systems. part I: Using simple diagonal preconditioners. SIAM J. Numer. Anal. 30, 630–649 (1993)
Zulehner, W.: A class of smoothers for saddle point problems. Computer 65, 227–246 (2000)
Zulehner, W.: Analysis of iterative methods for saddle point problems: a unified approach. Math. Comput. 71, 479–505 (2001)
Acknowledgements
This work has been done in collaboration with Prof. Ahmed Sameh, and the author would like to acknowledge him for his continuous support.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag London Limited
About this chapter
Cite this chapter
Baggag, A. (2012). A Preconditioned Scheme for Nonsymmetric Saddle-Point Problems. In: Berry, M., et al. High-Performance Scientific Computing. Springer, London. https://doi.org/10.1007/978-1-4471-2437-5_11
Download citation
DOI: https://doi.org/10.1007/978-1-4471-2437-5_11
Publisher Name: Springer, London
Print ISBN: 978-1-4471-2436-8
Online ISBN: 978-1-4471-2437-5
eBook Packages: Computer ScienceComputer Science (R0)