[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Robust and Efficient Multifrontal Solver for Large Discretized PDEs

  • Chapter
High-Performance Scientific Computing

Abstract

This paper presents a robust structured multifrontal factorization method for large symmetric positive definite sparse matrices arising from the discretization of partial differential equations (PDEs). For PDEs such as 2D and 3D elliptic equations, the method costs roughly O(n) and O(n 4/3) flops, respectively. The algorithm takes advantage of a low-rank property in the direct factorization of some discretized matrices. We organize the factorization with a supernodal multifrontal method after the nested dissection ordering of the matrix. Dense intermediate matrices in the factorization are approximately factorized into hierarchically semiseparable (HSS) forms, so that a data-sparse Cholesky factor is computed and is guaranteed to exist, regardless of the accuracy of the approximation. We also use an idea of rank relaxation for HSS methods so as to achieve similar performance with flexible structures in broader types of PDE. Due to the structures and the rank relaxation, the performance of the method is relatively insensitive to parameters such as frequencies and sizes of discontinuities. Our method is also much simpler than similar structured multifrontal methods, and is more generally applicable (to PDEs on irregular meshes and to general sparse matrices as a black-box direct solver). The method also has the potential to work as a robust and effective preconditioner even if the low-rank property is insignificant. We demonstrate the efficiency and effectiveness of the method with several important PDEs. Various comparisons with other similar methods are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bebendorf, M.: Efficient inversion of the Galerkin matrix of general second-order elliptic operators with nonsmooth coefficients. Math. Comput. 74(251), 1179–1199 (2005)

    MathSciNet  MATH  Google Scholar 

  2. Bebendorf, M., Hackbusch, W.: Existence of \(\mathcal{H}\)-matrix approximants to the inverse FE-matrix of elliptic operators with l -coefficients. Numer. Math. 95, 1–28 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chandrasekaran, S., Dewilde, P., Gu, M., Lyons, W., Pals, T.: A fast solver for HSS representations via sparse matrices. SIAM J. Matrix Anal. Appl. 29, 67–81 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chandrasekaran, S., Dewilde, P., Gu, M., Somasunderam, N.: On the numerical rank of the off-diagonal blocks of Schur complements of discretized elliptic PDEs. SIAM J. Matrix Anal. Appl. 31, 2261–2290 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chandrasekaran, S., Gu, M., Pals, T.: A fast ULV decomposition solver for hierarchically semiseparable representations. SIAM J. Matrix Anal. Appl. 28, 603–622 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, L.: iFEM: An innovative finite element methods package in MATLAB. Technical Report (2008). http://math.uci.edu/~chenlong/Papers/iFEMpaper.pdf

  7. Davis, T.A., Hu, Y.: The university of Florida sparse matrix collection. ACM Trans. Math. Softw.

    Google Scholar 

  8. Demmel, J.W., Gilbert, J.R., Li, X.S.: SuperLU Users’ Guide (2003). http://crd.lbl.gov/~xiaoye/SuperLU/

  9. Duff, I.S., Reid, J.K.: The multifrontal solution of indefinite sparse symmetric linear. ACM Trans. Math. Softw. 9, 302–325 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  10. Eidelman, Y., Gohberg, I.C.: On a new class of structured matrices. Integral Equ. Oper. Theory 34, 293–324 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. Engquist, B., Ying, L.: Sweeping preconditioner for the Helmholtz equation: Hierarchical matrix representation. Commun. Pure Appl. Math. 64, 697–735 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. George, A.: Nested dissection of a regular finite element mesh. SIAM J. Numer. Anal. 10, 345–363 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gilbert, J.R., Teng, S.H.: MESHPART, a Matlab mesh partitioning and graph separator toolbox (2002). http://aton.cerfacs.fr/algor/Softs/MESHPART/

  14. Greengard, L., Rokhlin, V.: A fast algorithm for particle simulations. J. Comp. Physiol. 73, 325–348 (1987)

    MathSciNet  MATH  Google Scholar 

  15. Hackbusch, W.: A sparse matrix arithmetic based on \(\mathcal{H}\)-matrices. Part I: Introduction to \(\mathcal{H}\)-matrices. Computer 62, 89–108 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hackbusch, W., Börm, S.: Data-sparse approximation by adaptive \(\mathcal{H}^{2}\)-matrices. Computer 69, 1–35 (2002)

    Article  MATH  Google Scholar 

  17. Hoffman, A.J., Martin, M.S., Rose, D.J.: Complexity bounds for regular finite difference and finite element grids. SIAM J. Numer. Anal. 10, 364–369 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  18. Karypis, G.: METIS: family of multilevel partitioning algorithms (1998). http://glaros.dtc.umn.edu/gkhome/metis/metis/overview

  19. Le Borne, S., Grasedyck, L., Kriemann, R.: Domain-decomposition based \(\mathcal{H}\)-LU preconditioners. Domain Decomposition Methods in Science and Engineering XVI. in O.B. Widlund, D.E. Keyes (Eds) 55, 661–668 (2006)

    Google Scholar 

  20. Liu, J.W.H.: The multifrontal method for sparse matrix solution: Theory and practice. SIAM Rev. 34, 82–109 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lyons, W.: Fast algorithms with applications to PDEs. Ph.D. Thesis, UCSB (2005)

    Google Scholar 

  22. Parter, S.: The use of linear graphs in Gauss elimination. SIAM Rev. 3, 119–130 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  23. Polizzi, E., Sameh, A.H.: A parallel hybrid banded system solver: the SPIKE algorithm. Parallel Comput. 32, 177–194 (2006)

    Article  MathSciNet  Google Scholar 

  24. Sambavaram, S.R., Sarin, V., Sameh, A.H., Grama, A.: Multipole-based preconditioners for large sparse linear systems. Parallel Comput. 29, 1261–1273 (2003)

    Article  MathSciNet  Google Scholar 

  25. Schmitz, P.G., Ying, L.: A fast direct solver for elliptic problems on general meshes in 2D. J. Comput. Phys. (2011). doi:10.1016/j.jcp.2011.10.013

    Google Scholar 

  26. Schmitz, P.G., Ying, L.: A fast direct solver for elliptic problems on Cartesian meshes in 3D (2011, submitted). http://www.math.utexas.edu/users/lexing/publications/direct3d.pdf

  27. Tewarson, R.P.: On the product form of inverses of sparse matrices. SIAM Rev. 8 (1966)

    Google Scholar 

  28. Vandebril, R., Barel, M.V., Golub, G., Mastronardi, N.: A bibliography on semiseparable matrices. Calcolo 42, 249–270 (2005)

    Article  MathSciNet  Google Scholar 

  29. Wang, S., Li, X.S., Xia, J., Situ, Y., de Hoop, V.M.: Efficient scalable algorithms for hierarchically semiseparable matrices. Preprint (2011). http://www.math.purdue.edu/~xiaj/work/parhss.pdf

  30. Xia, J.: Robust structured multifrontal factorization and preconditioning for discretized PDEs. Preprint (2008). http://www.math.purdue.edu/~xiaj/work/mfprec.pdf

  31. Xia, J.: Efficient structured multifrontal factorization for large sparse matrices. Preprint (2010). http://www.math.purdue.edu/~xiaj/work/mfhss.pdf

  32. Xia, J.: On the complexity of some hierarchical structured matrices. SIAM J. Matrix Anal. Appl. (2011, submitted). http://www.math.purdue.edu/~xiaj/work/hsscost.pdf

  33. Xia, J., Chandrasekaran, S., Gu, M., Li, X.S.: Superfast multifrontal method for large structured linear systems of equations. SIAM J. Matrix Anal. Appl. 31, 1382–1411 (2009)

    Article  MathSciNet  Google Scholar 

  34. Xia, J., Chandrasekaran, S., Gu, M., Li, X.S.: Fast algorithms for hierarchically semiseparable matrices. Numer. Linear Algebra Appl. 17, 953–976 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  35. Xia, J., Gu, M.: Robust approximate Cholesky factorization of rank-structured symmetric positive definite matrices. SIAM J. Matrix Anal. Appl. 31, 2899–2920 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author thanks Ming Gu, Xiaoye S. Li, and Jie Shen for some useful discussions, and thanks Zhiqiang Cai and Long Chen for providing two test examples. This research was supported in part by NSF grant CHE-0957024.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianlin Xia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Xia, J. (2012). Robust and Efficient Multifrontal Solver for Large Discretized PDEs. In: Berry, M., et al. High-Performance Scientific Computing. Springer, London. https://doi.org/10.1007/978-1-4471-2437-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2437-5_10

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2436-8

  • Online ISBN: 978-1-4471-2437-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics