[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Symideal Gröbner bases

  • Regular Papers
  • Conference paper
  • First Online:
Rewriting Techniques and Applications (RTA 1996)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1103))

Included in the following conference series:

Abstract

This paper presents a completion technique for a set of polynomials in K[X 1,..., X n] which is closed under addition and under multiplication with symmetric polynomials as well as a solution for the corresponding membership problem. Our algorithmic approach is based on a generalization of a novel rewriting technique for the computation of bases for rings of permutation-invariant polynomials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Becker, T., Weispfenning, V., in Cooperation with Kredel, H. (1993). Gröbner Bases: A Computational Approach to Commutative Algebra. Springer, New York

    Google Scholar 

  2. Buchberger, B. (1985). Gröbner Bases: An Algorithmic Method in Polynomial Ideal Theory. In: Bose, N. K. (ed.), Multidimensional Systems Theory. Reidel, Dordrecht, 184–232

    Google Scholar 

  3. Göbel, M. (1995). Computing Bases for Permutation-Invariant Polynomials. Journal of Symbolic Computation 19, 285–291

    Article  Google Scholar 

  4. Göbel, M. (1996). Computing Bases for Permutation-Invariant Polynomials. Dissertation, Universität Tübingen. Shaker, Aachen

    Google Scholar 

  5. Knuth, D. E., Bendix, P. B. (1970). Simple Word Problems in Universal Algebras. In: Leech, J. (ed.), Computational Problems in Abstract Algebra. Pergamon Press, 263–297

    Google Scholar 

  6. Kredel, H. (1990). MAS: Modula-2 Algebra System. In: Gerdt, V. P., Rostovtsev, V. A., and Shirkov, D. V. (eds.), IV International Conference on Computer Algebra in Physical Research. World Scientific Publishing Co., Singapore, 31–34

    Google Scholar 

  7. Loos, R. (1981). Term Reduction Systems and Algebraic Algorithms. In: Siekmann, J. H. (ed.), GWAI-81, German Workshop on Artificial Intelligence, Bad Honnef. Informatik-Fachberichte, Herausgegeben von W. Brauer im Auftrag der Gesellschaft für Informatik (GI), 47. Springer, Berlin, 214–234

    Google Scholar 

  8. Sturmfels, B. (1993). Algorithms in Invariant Theory. Springer, Vienna

    Google Scholar 

  9. Weispfenning, V. (1987). Admissible Orders and Linear Forms. ACM SIGSAM Bulletin 21/2, 16–18

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Harald Ganzinger

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Göbel, M. (1996). Symideal Gröbner bases. In: Ganzinger, H. (eds) Rewriting Techniques and Applications. RTA 1996. Lecture Notes in Computer Science, vol 1103. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-61464-8_42

Download citation

  • DOI: https://doi.org/10.1007/3-540-61464-8_42

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61464-7

  • Online ISBN: 978-3-540-68596-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics