[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Spatial Reasoning via Rough Sets

  • Conference paper
  • First Online:
Rough Sets and Current Trends in Computing (RSCTC 2000)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2005))

Included in the following conference series:

  • 5100 Accesses

Abstract

Rough set reasoning may be based on the notion of a part to a degree as proposed in rough mereology. Mereological theories form also a foundation for spatial reasoning. Here we show how to base spatial reasoning on rough-set notions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. L. Clarke, A calculus of individuals based on connection, Notre Dame Journal of Formal Logic 22(2), 1981, pp.204–218.

    Article  MATH  MathSciNet  Google Scholar 

  2. A. G. Cohn, Calculi for qualitative spatial reasoning, in: J. Calmet, J. A. Campbell, J. Pfalzgraf (eds.), Artificial Intelligence and Symbolic Mathematical Computation, Lecture Notes in Computer Science, vol. 1138, Springer Verlag, Berlin, pp. 124–143.

    Google Scholar 

  3. A. G. Cohn, A. C. Varzi, Connections relations in mereotopology, in: H. Prade (ed.), Proceedings ECAI'98. 13th European Conference on Artificial Intelligence, Wiley and Sons, Chichester, 1998, pp. 150–154.

    Google Scholar 

  4. A. G. Cohn, N. M. Gotts, The “egg-yolk” representation of regions with indeterminate boundaries, in: P. Burrough, A. M. Frank (eds.), Proceedings GISDATA Specialist Meeting on Spatial Objects with Undetermined Boundaries, Fr. Taylor, 1996, pp.171–187.

    Google Scholar 

  5. J. Srzednicki, S. J. Surma, D. Barnett, V. F. Rickey (eds.), Collected Works of Stanislaw Leśniewski, Kluwer, Dordrecht, 1992.

    Google Scholar 

  6. E. Čech, Topological Spaces, Academia, Praha, 1966.

    Google Scholar 

  7. C. Freksa, D. M. Mark (eds.), Spatial Information Theory. Cognitive and Computational Foundations of Geographic Information Science, Lecture Notes in Computer Science,vol. 1661, Springer Verlag, Berlin, 1999.

    Chapter  Google Scholar 

  8. N. Guarino, The ontological level, in: R. Casati, B. Smith, G. White (eds.), Philosophy and the Cognitive Sciences, Hoelder-Pichler-Tempsky, Vienna, 1994.

    Google Scholar 

  9. R. Kruse, J. Gebhardt, F. Klawonn, Foundations of Fuzzy Systems, John Wiley & Sons, Chichester, 1984.

    Google Scholar 

  10. S. Leśniewski On the foundations of mathematics, Topoi 2, 1982, pp. 7–52.

    Google Scholar 

  11. C. Masolo, L. Vieu, Atomicity vs. in finite divisibility of space, in: [7], pp. 235–250.

    Google Scholar 

  12. Z. Pawlak, Rough Sets: Theoretical Aspects of Reasoning about Data, Kluwer, Dordrecht, 1992.

    Google Scholar 

  13. L. Polkowski and A. Skowron, Rough mereology: a new paradigm for approximate reasoning, International Journal of Approximate Reasoning 15(4), 1997, pp. 333–365.

    Article  MathSciNet  Google Scholar 

  14. L. Polkowski, On connection synthesis via rough mereology, Fundamenta Informaticae, to appear.

    Google Scholar 

  15. B. Smith, Logic and formal ontology, in: J. N. Mohanty, W. McKenna (eds.), Husserl’s Phenomenology: A Textbook, Lanham: University Press of America, 1989, pp. 29–67.

    Google Scholar 

  16. B. Smith, Boundaries: an essay in mereotopology, in: L. Hahn (ed.), The Philosophy of Roderick Chisholm, Library of Living Philosophers, La Salle: Open Court, 1997, pp. 534–561.

    Google Scholar 

  17. J. G. Stell, Granulation for graphs, in: [7], pp. 416–432.

    Google Scholar 

  18. T. Topaloglou, First-order theories of approximate space, in Working Notes of the AAAI Workshop on Spatial and Temporal Reasoning, Seattle, 1994, pp. 47–53.

    Google Scholar 

  19. M. F. Worboys, Imprecision in finite resolution spatial data, Geoinformatica, 1998, pp. 257–279.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Polkowski, L. (2001). Spatial Reasoning via Rough Sets. In: Ziarko, W., Yao, Y. (eds) Rough Sets and Current Trends in Computing. RSCTC 2000. Lecture Notes in Computer Science(), vol 2005. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45554-X_59

Download citation

  • DOI: https://doi.org/10.1007/3-540-45554-X_59

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43074-2

  • Online ISBN: 978-3-540-45554-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics