Abstract
Rough set reasoning may be based on the notion of a part to a degree as proposed in rough mereology. Mereological theories form also a foundation for spatial reasoning. Here we show how to base spatial reasoning on rough-set notions.
Preview
Unable to display preview. Download preview PDF.
References
B. L. Clarke, A calculus of individuals based on connection, Notre Dame Journal of Formal Logic 22(2), 1981, pp.204–218.
A. G. Cohn, Calculi for qualitative spatial reasoning, in: J. Calmet, J. A. Campbell, J. Pfalzgraf (eds.), Artificial Intelligence and Symbolic Mathematical Computation, Lecture Notes in Computer Science, vol. 1138, Springer Verlag, Berlin, pp. 124–143.
A. G. Cohn, A. C. Varzi, Connections relations in mereotopology, in: H. Prade (ed.), Proceedings ECAI'98. 13th European Conference on Artificial Intelligence, Wiley and Sons, Chichester, 1998, pp. 150–154.
A. G. Cohn, N. M. Gotts, The “egg-yolk” representation of regions with indeterminate boundaries, in: P. Burrough, A. M. Frank (eds.), Proceedings GISDATA Specialist Meeting on Spatial Objects with Undetermined Boundaries, Fr. Taylor, 1996, pp.171–187.
J. Srzednicki, S. J. Surma, D. Barnett, V. F. Rickey (eds.), Collected Works of Stanislaw Leśniewski, Kluwer, Dordrecht, 1992.
E. Čech, Topological Spaces, Academia, Praha, 1966.
C. Freksa, D. M. Mark (eds.), Spatial Information Theory. Cognitive and Computational Foundations of Geographic Information Science, Lecture Notes in Computer Science,vol. 1661, Springer Verlag, Berlin, 1999.
N. Guarino, The ontological level, in: R. Casati, B. Smith, G. White (eds.), Philosophy and the Cognitive Sciences, Hoelder-Pichler-Tempsky, Vienna, 1994.
R. Kruse, J. Gebhardt, F. Klawonn, Foundations of Fuzzy Systems, John Wiley & Sons, Chichester, 1984.
S. Leśniewski On the foundations of mathematics, Topoi 2, 1982, pp. 7–52.
C. Masolo, L. Vieu, Atomicity vs. in finite divisibility of space, in: [7], pp. 235–250.
Z. Pawlak, Rough Sets: Theoretical Aspects of Reasoning about Data, Kluwer, Dordrecht, 1992.
L. Polkowski and A. Skowron, Rough mereology: a new paradigm for approximate reasoning, International Journal of Approximate Reasoning 15(4), 1997, pp. 333–365.
L. Polkowski, On connection synthesis via rough mereology, Fundamenta Informaticae, to appear.
B. Smith, Logic and formal ontology, in: J. N. Mohanty, W. McKenna (eds.), Husserl’s Phenomenology: A Textbook, Lanham: University Press of America, 1989, pp. 29–67.
B. Smith, Boundaries: an essay in mereotopology, in: L. Hahn (ed.), The Philosophy of Roderick Chisholm, Library of Living Philosophers, La Salle: Open Court, 1997, pp. 534–561.
J. G. Stell, Granulation for graphs, in: [7], pp. 416–432.
T. Topaloglou, First-order theories of approximate space, in Working Notes of the AAAI Workshop on Spatial and Temporal Reasoning, Seattle, 1994, pp. 47–53.
M. F. Worboys, Imprecision in finite resolution spatial data, Geoinformatica, 1998, pp. 257–279.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2001 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Polkowski, L. (2001). Spatial Reasoning via Rough Sets. In: Ziarko, W., Yao, Y. (eds) Rough Sets and Current Trends in Computing. RSCTC 2000. Lecture Notes in Computer Science(), vol 2005. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45554-X_59
Download citation
DOI: https://doi.org/10.1007/3-540-45554-X_59
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-43074-2
Online ISBN: 978-3-540-45554-7
eBook Packages: Springer Book Archive