[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Data Structures for Maintaining Set Partitions

Extended Abstract

  • Conference paper
  • First Online:
Algorithm Theory - SWAT 2000 (SWAT 2000)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1851))

Included in the following conference series:

Abstract

Each test or feature in a classification system defines a set partition on a class of objects. Adding new features refines the classification, whereas deleting features may result in merging previously distinguished classes. As an illustration, consider the set of automobile types {VW Beetle, Toyota, Lexus, Cadillac}. The feature size partitions the cars into sets of small and large cars, {VW Beetle, Toyota}, {Lexus, Cadillac}. The feature domestic-origin partitions the cars into {VW Beetle, Toyota, Lexus, Cadillac}. The feature uglyshape distinguishes {VW Beetle, Cadillac} from {Toyota, Lexus}. Incorporating both size and origin induces the refined partition {VW Beetle, Toyota}, {Lexus}, {Cadillac}, whereas the union of all three features completely distinguishes the types of cars. In fact, size and uglyshape are sufficient for complete identification, so domestic-origin could be deleted from the set of features without affecting the induced partition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Arkin, H. Meijer, J. Mitchell, D. Rappaport, and S. Skiena. Decision trees for geometric objects. Int. J. Computational Geometry and Applications, 8:343–363, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  2. Gruia Calinescu. A data structure for maintaining a partition. manuscript, 2000.

    Google Scholar 

  3. Bernard Chazelle, H. Edelsbrunner, M. Grigni, Leonidas J.Guibas, J. Hershberger, Micha Sharir, and J. Snoeyink. Ray shooting in polygons using geodesic triangulationsAlgorithmica, 12:54–68, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  4. R. Cole and R. Hariharan. Dynamic LCA queries on trees. In Proc. Tenth ACM-SIAM Symp. Discrete Algorithms (SODA), pages 235–244, 1999.

    Google Scholar 

  5. Mark de Berg, Marc van Kreveld, Mark Overmars, and Otfried Schwarzkopf. Computational Geometry: Algorithms and Applications. Springer-Verlag, Berlin, 1997.

    Google Scholar 

  6. P. Dietz, K. Mehlhorn, R. Raman, and C. Uhrig. Lower bounds for set intersection queries. In Proc. Fourth ACM-SIAM Symp. Discrete Algorithms (SODA), pages 194–201, 1993.

    Google Scholar 

  7. J. Feigenbaum and S. Kannan. Dynamic graph algorithms. Handbook of Discrete and Combinatorial Mathematics, 1995.

    Google Scholar 

  8. R. Freimer, J. Mitchell, and C. Piatko. On the complexity of shattering using arrangements. In CCCG: Canadian Conference in Computational Geometry, 1990.

    Google Scholar 

  9. L. Guibas and R. Sedgewick. A bichromatic framework for balanced trees. In Proc. 19th IEEE Symp. Foundations of Computer Science, pages 8–21, 1978.

    Google Scholar 

  10. D. Gusfield. Algorithms on Strings, Trees, and Sequences. Cambridge University Press, 1997.

    Google Scholar 

  11. M. Habib, C. Paul, and L. Viennot. A synthesis on partition refinement: A useful routine for strings, graphs, boolean matrices and automata. In Proc. Fifteenth STACS, pages 25–38. Springer-Verlag LNCS, 1998.

    Google Scholar 

  12. J. Hopcroft. An nlogn algorithm for minimizing the states in a finite automaton. In Z. Kohavi, editor, The theory of machines and computations, pages 189–196. Academic Press, New York, 1971.

    Google Scholar 

  13. J. Matoušek. More on cutting arrangements and spanning trees with low crossing number. Technical Report B-90-2, Fachbereich Mathematik, Freie Universität Berlin, Berlin, 1990.

    Google Scholar 

  14. R. Paige and R. Tarjan. Three partition refinement algorithms. SIAM J. Computing, 16:973–989, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  15. G. Sazaklis, E. Arkin, J. Mitchell, and S. Skiena. Probe trees for touching character recognition. In Proc. International Conference on Imaging Science, Systems and Technology, (CISST), pages 282–289, Las Vegas, NV, 1998.

    Google Scholar 

  16. G. Sazaklis, E. Arkin, J. S. B. Mitchell, and S. Skiena. Geometric decision trees for optical character recognition. In Proc. of 13th Annual ACM Symposium on Computational Geometry, pages 490–492, Nice, France, June 1997.

    Google Scholar 

  17. R. Tarjan. Efficiency of a good but not linear set union algorithm. J. ACM, 22:215–225, 1975.

    Article  MATH  MathSciNet  Google Scholar 

  18. E. Ukkonen. Constructing suffix trees on-line in linear time. In Intern. Federation of Information Processing (IFIP)’ 92, pages 484–492, 1992.

    Google Scholar 

  19. D. Yellin. Representing sets with constant time equality testing. In Proc. First ACM-SIAM Symp. Discrete Algorithms (SODA), pages 64–73, 1990.

    Google Scholar 

  20. D. Yellin. Algorithms for subset testing and finding maximal sets. In Proc. Third ACM-SIAM Symp. Discrete Algorithms (SODA), pages 386–392, 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bender, M.A., Sethia, S., Skiena, S. (2000). Data Structures for Maintaining Set Partitions. In: Algorithm Theory - SWAT 2000. SWAT 2000. Lecture Notes in Computer Science, vol 1851. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44985-X_9

Download citation

  • DOI: https://doi.org/10.1007/3-540-44985-X_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67690-4

  • Online ISBN: 978-3-540-44985-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics