[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

T-Ferrers Relations versus T-biorders

  • Conference paper
  • First Online:
Fuzzy Sets and Systems — IFSA 2003 (IFSA 2003)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2715))

Included in the following conference series:

  • 1282 Accesses

Abstract

In this paper, we study the Ferrers property of relations in the context of fuzzy preference modelling. A logical approach leads us to the notion of T-Ferrers relations, while a relational approach brings us to T-biorders. We characterize the t-norms for which both notions coincide. We also describe the kind of completeness exhibited by reflexive T-Ferrers relations or reflexive T-biorders. Finally, we investigate the relationship between the T-Ferrers properties of a reflexive fuzzy relation R and the corresponding strict preference relation P, and the relationship between R and P being T-biorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. B. De Baets and J. Fodor, Twenty years of fuzzy preference structures (1978–1997), JORBEL 37 (1997), 61–82.

    MATH  Google Scholar 

  2. B. De Baets and J. Fodor, Generator triplets of additive fuzzy preference structures, Proc. Sixth Internat. Workshop on Relational Methods in Computer Science (Tilburg, The Netherlands), 2001, pp. 306–315.

    Google Scholar 

  3. B. De Baets and B. Van de Walle, Weak and strong fuzzy interval orders, Fuzzy Sets and Systems 79 (1996), 213–225.

    Article  MATH  MathSciNet  Google Scholar 

  4. B. De Baets, B. Van de Walle and E. Kerre, Fuzzy preference structures without incomparability, Fuzzy Sets and Systems 76 (1995), 333–348.

    Article  MATH  MathSciNet  Google Scholar 

  5. K. Demirli and B. De Baets, Basic properties of implicators in a residual framework, Tatra Mt. Math. Publ. 16 (1999), 31–46.

    MATH  MathSciNet  Google Scholar 

  6. J.-P. Doignon, B. Monjardet, M. Roubens and Ph. Vincke, Biorder families, valued relations, and preference modelling, J. Math. Psych. 30 (1986), 435–480.

    Article  MATH  MathSciNet  Google Scholar 

  7. J. Fodor, Traces of binary fuzzy relations, Fuzzy Sets and Systems 50 (1992), 331–341.

    Article  MATH  MathSciNet  Google Scholar 

  8. J. Fodor, A new look at fuzzy connectives, Fuzzy Sets and Systems 57 (1993), 141–148.

    Article  MATH  MathSciNet  Google Scholar 

  9. J. Fodor, Contrapositive symmetry of fuzzy implications, Fuzzy Sets and Systems 69 (1995), 141–156.

    Article  MATH  MathSciNet  Google Scholar 

  10. J. Fodor and M. Roubens, Fuzzy Preference Modelling and Multicriteria Decision Support, Kluwer Academic Publishers, 1994.

    Google Scholar 

  11. S. Jenei, Geometry of left-continuous triangular norms with strong induced negations, JORBEL 98 (1998), 5–16.

    MathSciNet  Google Scholar 

  12. S. Jenei, New family of triangular norms via contrapositive symmetrization of residuated implications, Fuzzy Sets and Systems 110 (2000), 157–174.

    Article  MATH  MathSciNet  Google Scholar 

  13. S. Jenei, Structure of left-continuous triangular norms with strong induced negations. (I) Rotation construction, J. Appl. Non-Classical Logics 10 (2000), 83–92.

    MATH  MathSciNet  Google Scholar 

  14. S. Jenei, Structure of left-continuous triangular norms with strong induced negations. (II) Rotation-annihilation construction, J. Appl. Non-Classical Logics 11 (2001), 351–366.

    Article  MATH  MathSciNet  Google Scholar 

  15. S. Jenei, Structure of left-continuous triangular norms with strong induced negations. (III) Construction and decomposition, Fuzzy Sets and Systems 128 (2002), 197–208.

    Article  MATH  MathSciNet  Google Scholar 

  16. E.-P. Klement, R. Mesiar and E. Pap, Triangular Norms, Trends in Logic, Studia Logica Library, Vol. 8, Kluwer Academic Publishers, Dordrecht, 2000.

    Google Scholar 

  17. B. Monjardet, Axiomatiques et propriétés des quasi-ordres, Math. Sci. Hum. 63 (1978), 51–82.

    MATH  MathSciNet  Google Scholar 

  18. M. Roubens and Ph. Vincke, Preference modelling, Lecture Notes in Economics and Mathematical Systems, Vol. 76, 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Díaz, S., De Baets, B., Montes, S. (2003). T-Ferrers Relations versus T-biorders. In: Bilgiç, T., De Baets, B., Kaynak, O. (eds) Fuzzy Sets and Systems — IFSA 2003. IFSA 2003. Lecture Notes in Computer Science, vol 2715. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44967-1_32

Download citation

  • DOI: https://doi.org/10.1007/3-540-44967-1_32

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40383-8

  • Online ISBN: 978-3-540-44967-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics