[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Genetic Programming in Data Mining for Drug Discovery

  • Chapter
Evolutionary Computation in Data Mining

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 163))

Abstract

Genetic programming (GP) is used to extract from rat oral bioavailability (OB) measurements simple, interpretable and predictive QSAR models which both generalize to rats and to marketed drugs in humans. Receiver Operating Characteristics (ROC) curves for the binary classifier produced by machine learning show no statistical difference between rats (albeit without known clearance differences) and man. Thus evolutionary computing offers the prospect of in silico ADME screening, e.g. for “virtual” chemicals, for pharmaceutical drug discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Livingstone, D. (1995): Data analysis for chemists — applications to QSAR and chemical product design. Oxford University Press

    Google Scholar 

  2. Van de Waterbeemd, J., Gifford, E. (2003): ADMET in silico modelling: towards prediction paradise? Nature Reviews Drug Discovery, 2, 192–204

    Article  Google Scholar 

  3. Lipinski, C. A., Lombardo, F., Dominy, B. W., Feeney, P. J. (1997): Experi-mental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 23, 3–25

    Article  Google Scholar 

  4. Ekins, A., Waller, C. L., Swaan, P. W., Cruciani, G., Wrighton, S. A., Wikel, J. M (2000): Progress in predicting human ADME parameters in silico. Journal of Pharmacological and Toxicological Methods, 44, 251–272

    Article  Google Scholar 

  5. Journal of chemical information and computational sciences.

    Google Scholar 

  6. Podlogar, B. L., Muegge, I. (2001): “Holistic” in silico methods to estimate the systemic and CNS bioavailabilities of potential chemotherapeutic agents. Current Topics in Medicinal Chemistry, 1, 257–275

    Article  Google Scholar 

  7. Jones, G. (1998): Genetic and evolutionary algorithms. In Encyclopedia of Computational Chemistry. John Wiley & Sons, Ltd

    Google Scholar 

  8. Sheridan, R. P., SanFeliciano, S. G., Kearsley, S. K. (2000): Designing targeted libraries with genetic algorithms. Journal of Molecular Graphics and Modelling, 18, 320–334

    Article  Google Scholar 

  9. Nicolotti, O., Gillet, V. J., Fleming, P. J., Green, D. V. S. (2002): Multi-objective optimization in quantitative structure-activity relationships: Deriving accurate and interpretable QSARs. Journal of Medicinal Chemistry, 45, 5069–5080

    Article  Google Scholar 

  10. Kotanchek, M., Kordon, A., Smits, G., Castillo, F., Pell, R., Seasholtz, M. B., Chiang, L., Margl, P., Mercure, P. K., Kalos, A. (2002): Evolutionary computing in Dow Chemical. In Lawrence “Dave” Davis and Rajkumar Roy, editors, GECCO-2002 Presentations in the Evolutionary Computation in Industry Track, 101–110, New York, New York

    Google Scholar 

  11. Langdon, W. B., Barrett, S. J., Buxton, B. F. (2002): Genetic programming for combining neural networks for drug discovery. In Roy, R., Köppen, M., Ovaska, S., Furuhashi, T., Hoffmann, F., editors, Soft Computing and Industry Recent Applications, 597–608. Springer-Verlag, 10–24

    Google Scholar 

  12. Langdon, W. B., Barrett, S. J., Buxton, B. F. (2002): Combining decision trees and neural networks for drug discovery. In Foster, J. A., Lutton, E., Miller, J., Ryan, C, Tettamanzi, A. G. B., editors, Genetic Programming, Proceedings of the 5th European Conference, EuroGP 2002, 2278 of LNCS, 60–70, Springer-Verlag

    Google Scholar 

  13. Langdon, W. B., Barrett, S. J., Buxton, B. F. (2003): Comparison of adaboost and genetic programming for combining neural networks for drug discovery. In Raidl, G., Cagnoni, S., Cardalda, J. J., Come, D. W., Gottlieb, J., Guillot, A., Hart, E., Johnson, C. J., Marchiori, E., Meyer, J. A., Middendorf, M., editors, Applications of Evolutionary Computing, EvoWorkshops2003: Evo-BIO, EvoCOP, EvoIASP, EvoMUSART, EvoROB, EvoSTIM, 2611 of LNCS, 87–98, Springer-Verlag

    Google Scholar 

  14. Langdon, W. B., Barrett, S. J., Buxton, B. F. (2003): Predicting biochemical interactions — human P450 2D6 enzyme inhibition. In Proceedings of the 2003 Congress on Evolutionary Computation CEC2003, IEEE Press

    Google Scholar 

  15. Bains, W., Gilbert, R., Sviridenko, L., Gascon, J. M., Scoffin, R., Birchall, K., Harvey, I., Caldwell, J. (2002): Evolutionary computational methods to predict oral bioavailability QSPRs. Current Opinion in Drug Discovery and Development, 5, 44–51

    Google Scholar 

  16. Agorama, B., Woltosza, W. S., Bolger, M. B. (2001): Predicting the impact of physiological and biochemical processes on oral drug bioavailability. Advanced Drug Delivery Reviews, 50(Supplement 1), S41–S67

    Article  Google Scholar 

  17. Koza, J. R. (1992): Genetic programming: on the programming of computers by means of natural selection. MIT Press

    Google Scholar 

  18. Banzhaf, W., Nordin, P., Keller, R. E., Francone F. D. (1998): Genetic programming — an introduction; on the automatic evolution of computer programs and its applications. Morgan Kaufmann

    Google Scholar 

  19. Banzhaf, W., Foster, J. A. (editors.) (2002): Biological applications of evolutionary computation (BioGEC 2002), AAAI

    Google Scholar 

  20. Banzhaf, W., Foster, J. A. (editors.) (2003): Biological applications of evolutionary computation (BioGEC 2003), AAAI

    Google Scholar 

  21. Marchiori, E., Corne, D. W., (editors.) (2003): EvoBIO, the first european workshop on evolutionary bioinformatics, volume 2611 of LNCS, Springer-Verlag

    Google Scholar 

  22. Kell, D. (2002): Defence against the flood. Bioinformatics World, 16–18

    Google Scholar 

  23. Moore, J. H., Parker, J. S., Olsen, N. J., Aune, T. M. (2002): Symbolic discriminant analysis of microarray data in automimmune disease. Genetic Epidemiology, 23, 57–69

    Article  Google Scholar 

  24. Iba, H., Sakamoto, E. (2002): Inference of differential equation models by genetic programming. In Langdon, W. B., Cantú-Paz, E., Mathias, K., Roy, R., Davis, D., Poli, R., Balakrishnan, K., Honavar, V., Rudolph, G., Wegener, J., Bull, L., Potter, M. A., Schultz, A. C, Miller, J. F., Burke, E., Jonoska, N., editors, GECCO 2002: Proceedings of the Genetic and Evolutionary Computation Conference, 788–795, Morgan Kaufmann Publishers

    Google Scholar 

  25. Koza, J. R., Mydlowec, W., Lanza, G., Yu, J., Keane, M. A. (2000): Reverse engineering of metabolic pathways from observed data by means of genetic programming. In First International Conference on Systems Biology (ICSB)

    Google Scholar 

  26. Langdon, W. B., Buxton, B. F. (2001): Evolving receiver operating charac-teristics for data fusion. In Miller, J. F., Tomassini, M., Lanzi, P. L., Ryan, C, Tettamanzi, A. G. B., Langdon, W. B., editors, Genetic Programming, Proceedings of EuroGP’2001, volume 2038 of LNCS, 87–96, Springer-Verlag

    Google Scholar 

  27. Langdon, W. B., Buxton, B. F. (2001): Genetic programming for combining classifiers. In Spector, L., Goodman, E. D., Wu, A., Langdon, W. B., Voigt, H. M., Gen, M., Sen, S., Dorigo, M., Pezeshk, S., Garzon, M. H., Burke, E., editors, Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2001), 66–73, Morgan Kaufmann

    Google Scholar 

  28. Langdon, W. B., Buxton, B. F. (2001): Genetic programming for improved receiver operating characteristics. In Josef Kittler and Fabio Roli, editors, Second International Conference on Multiple Classifier System, volume 2096 of LNCS, 68–77, Springer Verlag

    Google Scholar 

  29. Langdon, W. B., Buxton, B. F. (2004): Genetic programming for mining DNA chip data from cancer patients. Genetic Programming and Evolvable Machines

    Google Scholar 

  30. Yoshida, F., Topliss, J. G. (2000): QSAR model for drug human oral bioavailability. Journal of Medicinal Chemistry, 43, 2575–2585

    Article  Google Scholar 

  31. Andrews, C. W., Bennett, L., Yu, L. X. (2000): Predicting human oral bioavailability of a compound: Development of a novel quantitative structure-bioavailability relationship. Pharmaceutical Research, 17, 639–644

    Article  Google Scholar 

  32. Pintore, M., van de Waterbeemd, H., Piclin, N., Chretien, J. R. (2003): Prediction of oral bioavailability by adaptive fuzzy partitioning. European Journal of Medicinal Chemistry, 38, 427–431. XVIIth International Symposium on Medicinal Chemistry

    Article  Google Scholar 

  33. Veber, D. F., Johnson, S. R., Cheng, H. Y., Smith, B. R., Ward, K. W., Kopple, K. D.(2002): Molecular properties that influence the oral bioavailability of drug candidates. Journal of Medicinal Chemistry, 45, 2615–2623

    Article  Google Scholar 

  34. Mandagere, A. K., Thompson, T. N., Hwang, K. K. (2002); Graphical model for estimating oral bioavailability of drugs in humans and other species from their Caco-2 permeability and in vitro liver enzyme metabolic stability rates. Journal of Medicinal Chemistry, 45, 304–311

    Article  Google Scholar 

  35. Goldberg, D. E. (1989): Genetic algorithms in search optimization and machine learning. Addison-Wesley

    Google Scholar 

  36. Langdon, W. B., Soule, T., Poli, R., Foster, J. A. (1999): The evolution of size and shape. In Lee Spector, William B. Langdon, Una-May O’Reilly, and Peter J. Angeline, editors, Advances in Genetic Programming, 3, 163–190. MIT Press

    Google Scholar 

  37. Swets, J. A., Dawes, R. M., Monahan, J. (2000): Better decisions through science. Scientific American, 283, 70–75

    Article  Google Scholar 

  38. Scott, M.J.J., Niranjan, M., Prager, R. W. (1998): Realisable classifiers: improving operating performance on variable cost problems. In Lewis, P. H., Nixon, M. S., editors, Proceedings of the Ninth British Machine Vision Conference, 1, 304–315, University of Southampton, UK

    Google Scholar 

  39. Provost, F., Fawcett, T. (2001): Robust classification for imprecise environments. Machine Learning, 42, 203–231

    Article  MATH  Google Scholar 

  40. Yusoff, Y., Kittler, J., Christmas., W. (1998): Combining multiple experts for classifying shot changes in video sequences. In IEEE International Conference on Multimedia Computing and Systems, 2, 700–704, Florence, Italy

    Article  Google Scholar 

  41. Hanley, J. A., McNeil, B. J. (1982): The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology, 143, 29–36

    Google Scholar 

  42. Langdon, W. B. (1998): Genetic programming and data structures: genetic programming + data structures = automatic programming!, 1, Genetic Programming. Kluwer, Boston

    Google Scholar 

  43. Langdon, W. B. (2000): Size fair and homologous tree genetic programming crossovers. Genetic Programming and Evolvable Machines, 1, 95–119

    Article  MATH  Google Scholar 

  44. Angeline, P. J. (1998): Multiple interacting programs: A representation for evolving complex behaviors. Cybernetics and Systems, 29, 779–806

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Langdon, W.B., Barrett, S.J. (2005). Genetic Programming in Data Mining for Drug Discovery. In: Ghosh, A., Jain, L.C. (eds) Evolutionary Computation in Data Mining. Studies in Fuzziness and Soft Computing, vol 163. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-32358-9_10

Download citation

  • DOI: https://doi.org/10.1007/3-540-32358-9_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22370-2

  • Online ISBN: 978-3-540-32358-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics