Abstract
Genetic programming (GP) is used to extract from rat oral bioavailability (OB) measurements simple, interpretable and predictive QSAR models which both generalize to rats and to marketed drugs in humans. Receiver Operating Characteristics (ROC) curves for the binary classifier produced by machine learning show no statistical difference between rats (albeit without known clearance differences) and man. Thus evolutionary computing offers the prospect of in silico ADME screening, e.g. for “virtual” chemicals, for pharmaceutical drug discovery.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Livingstone, D. (1995): Data analysis for chemists — applications to QSAR and chemical product design. Oxford University Press
Van de Waterbeemd, J., Gifford, E. (2003): ADMET in silico modelling: towards prediction paradise? Nature Reviews Drug Discovery, 2, 192–204
Lipinski, C. A., Lombardo, F., Dominy, B. W., Feeney, P. J. (1997): Experi-mental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 23, 3–25
Ekins, A., Waller, C. L., Swaan, P. W., Cruciani, G., Wrighton, S. A., Wikel, J. M (2000): Progress in predicting human ADME parameters in silico. Journal of Pharmacological and Toxicological Methods, 44, 251–272
Journal of chemical information and computational sciences.
Podlogar, B. L., Muegge, I. (2001): “Holistic” in silico methods to estimate the systemic and CNS bioavailabilities of potential chemotherapeutic agents. Current Topics in Medicinal Chemistry, 1, 257–275
Jones, G. (1998): Genetic and evolutionary algorithms. In Encyclopedia of Computational Chemistry. John Wiley & Sons, Ltd
Sheridan, R. P., SanFeliciano, S. G., Kearsley, S. K. (2000): Designing targeted libraries with genetic algorithms. Journal of Molecular Graphics and Modelling, 18, 320–334
Nicolotti, O., Gillet, V. J., Fleming, P. J., Green, D. V. S. (2002): Multi-objective optimization in quantitative structure-activity relationships: Deriving accurate and interpretable QSARs. Journal of Medicinal Chemistry, 45, 5069–5080
Kotanchek, M., Kordon, A., Smits, G., Castillo, F., Pell, R., Seasholtz, M. B., Chiang, L., Margl, P., Mercure, P. K., Kalos, A. (2002): Evolutionary computing in Dow Chemical. In Lawrence “Dave” Davis and Rajkumar Roy, editors, GECCO-2002 Presentations in the Evolutionary Computation in Industry Track, 101–110, New York, New York
Langdon, W. B., Barrett, S. J., Buxton, B. F. (2002): Genetic programming for combining neural networks for drug discovery. In Roy, R., Köppen, M., Ovaska, S., Furuhashi, T., Hoffmann, F., editors, Soft Computing and Industry Recent Applications, 597–608. Springer-Verlag, 10–24
Langdon, W. B., Barrett, S. J., Buxton, B. F. (2002): Combining decision trees and neural networks for drug discovery. In Foster, J. A., Lutton, E., Miller, J., Ryan, C, Tettamanzi, A. G. B., editors, Genetic Programming, Proceedings of the 5th European Conference, EuroGP 2002, 2278 of LNCS, 60–70, Springer-Verlag
Langdon, W. B., Barrett, S. J., Buxton, B. F. (2003): Comparison of adaboost and genetic programming for combining neural networks for drug discovery. In Raidl, G., Cagnoni, S., Cardalda, J. J., Come, D. W., Gottlieb, J., Guillot, A., Hart, E., Johnson, C. J., Marchiori, E., Meyer, J. A., Middendorf, M., editors, Applications of Evolutionary Computing, EvoWorkshops2003: Evo-BIO, EvoCOP, EvoIASP, EvoMUSART, EvoROB, EvoSTIM, 2611 of LNCS, 87–98, Springer-Verlag
Langdon, W. B., Barrett, S. J., Buxton, B. F. (2003): Predicting biochemical interactions — human P450 2D6 enzyme inhibition. In Proceedings of the 2003 Congress on Evolutionary Computation CEC2003, IEEE Press
Bains, W., Gilbert, R., Sviridenko, L., Gascon, J. M., Scoffin, R., Birchall, K., Harvey, I., Caldwell, J. (2002): Evolutionary computational methods to predict oral bioavailability QSPRs. Current Opinion in Drug Discovery and Development, 5, 44–51
Agorama, B., Woltosza, W. S., Bolger, M. B. (2001): Predicting the impact of physiological and biochemical processes on oral drug bioavailability. Advanced Drug Delivery Reviews, 50(Supplement 1), S41–S67
Koza, J. R. (1992): Genetic programming: on the programming of computers by means of natural selection. MIT Press
Banzhaf, W., Nordin, P., Keller, R. E., Francone F. D. (1998): Genetic programming — an introduction; on the automatic evolution of computer programs and its applications. Morgan Kaufmann
Banzhaf, W., Foster, J. A. (editors.) (2002): Biological applications of evolutionary computation (BioGEC 2002), AAAI
Banzhaf, W., Foster, J. A. (editors.) (2003): Biological applications of evolutionary computation (BioGEC 2003), AAAI
Marchiori, E., Corne, D. W., (editors.) (2003): EvoBIO, the first european workshop on evolutionary bioinformatics, volume 2611 of LNCS, Springer-Verlag
Kell, D. (2002): Defence against the flood. Bioinformatics World, 16–18
Moore, J. H., Parker, J. S., Olsen, N. J., Aune, T. M. (2002): Symbolic discriminant analysis of microarray data in automimmune disease. Genetic Epidemiology, 23, 57–69
Iba, H., Sakamoto, E. (2002): Inference of differential equation models by genetic programming. In Langdon, W. B., Cantú-Paz, E., Mathias, K., Roy, R., Davis, D., Poli, R., Balakrishnan, K., Honavar, V., Rudolph, G., Wegener, J., Bull, L., Potter, M. A., Schultz, A. C, Miller, J. F., Burke, E., Jonoska, N., editors, GECCO 2002: Proceedings of the Genetic and Evolutionary Computation Conference, 788–795, Morgan Kaufmann Publishers
Koza, J. R., Mydlowec, W., Lanza, G., Yu, J., Keane, M. A. (2000): Reverse engineering of metabolic pathways from observed data by means of genetic programming. In First International Conference on Systems Biology (ICSB)
Langdon, W. B., Buxton, B. F. (2001): Evolving receiver operating charac-teristics for data fusion. In Miller, J. F., Tomassini, M., Lanzi, P. L., Ryan, C, Tettamanzi, A. G. B., Langdon, W. B., editors, Genetic Programming, Proceedings of EuroGP’2001, volume 2038 of LNCS, 87–96, Springer-Verlag
Langdon, W. B., Buxton, B. F. (2001): Genetic programming for combining classifiers. In Spector, L., Goodman, E. D., Wu, A., Langdon, W. B., Voigt, H. M., Gen, M., Sen, S., Dorigo, M., Pezeshk, S., Garzon, M. H., Burke, E., editors, Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2001), 66–73, Morgan Kaufmann
Langdon, W. B., Buxton, B. F. (2001): Genetic programming for improved receiver operating characteristics. In Josef Kittler and Fabio Roli, editors, Second International Conference on Multiple Classifier System, volume 2096 of LNCS, 68–77, Springer Verlag
Langdon, W. B., Buxton, B. F. (2004): Genetic programming for mining DNA chip data from cancer patients. Genetic Programming and Evolvable Machines
Yoshida, F., Topliss, J. G. (2000): QSAR model for drug human oral bioavailability. Journal of Medicinal Chemistry, 43, 2575–2585
Andrews, C. W., Bennett, L., Yu, L. X. (2000): Predicting human oral bioavailability of a compound: Development of a novel quantitative structure-bioavailability relationship. Pharmaceutical Research, 17, 639–644
Pintore, M., van de Waterbeemd, H., Piclin, N., Chretien, J. R. (2003): Prediction of oral bioavailability by adaptive fuzzy partitioning. European Journal of Medicinal Chemistry, 38, 427–431. XVIIth International Symposium on Medicinal Chemistry
Veber, D. F., Johnson, S. R., Cheng, H. Y., Smith, B. R., Ward, K. W., Kopple, K. D.(2002): Molecular properties that influence the oral bioavailability of drug candidates. Journal of Medicinal Chemistry, 45, 2615–2623
Mandagere, A. K., Thompson, T. N., Hwang, K. K. (2002); Graphical model for estimating oral bioavailability of drugs in humans and other species from their Caco-2 permeability and in vitro liver enzyme metabolic stability rates. Journal of Medicinal Chemistry, 45, 304–311
Goldberg, D. E. (1989): Genetic algorithms in search optimization and machine learning. Addison-Wesley
Langdon, W. B., Soule, T., Poli, R., Foster, J. A. (1999): The evolution of size and shape. In Lee Spector, William B. Langdon, Una-May O’Reilly, and Peter J. Angeline, editors, Advances in Genetic Programming, 3, 163–190. MIT Press
Swets, J. A., Dawes, R. M., Monahan, J. (2000): Better decisions through science. Scientific American, 283, 70–75
Scott, M.J.J., Niranjan, M., Prager, R. W. (1998): Realisable classifiers: improving operating performance on variable cost problems. In Lewis, P. H., Nixon, M. S., editors, Proceedings of the Ninth British Machine Vision Conference, 1, 304–315, University of Southampton, UK
Provost, F., Fawcett, T. (2001): Robust classification for imprecise environments. Machine Learning, 42, 203–231
Yusoff, Y., Kittler, J., Christmas., W. (1998): Combining multiple experts for classifying shot changes in video sequences. In IEEE International Conference on Multimedia Computing and Systems, 2, 700–704, Florence, Italy
Hanley, J. A., McNeil, B. J. (1982): The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology, 143, 29–36
Langdon, W. B. (1998): Genetic programming and data structures: genetic programming + data structures = automatic programming!, 1, Genetic Programming. Kluwer, Boston
Langdon, W. B. (2000): Size fair and homologous tree genetic programming crossovers. Genetic Programming and Evolvable Machines, 1, 95–119
Angeline, P. J. (1998): Multiple interacting programs: A representation for evolving complex behaviors. Cybernetics and Systems, 29, 779–806
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Langdon, W.B., Barrett, S.J. (2005). Genetic Programming in Data Mining for Drug Discovery. In: Ghosh, A., Jain, L.C. (eds) Evolutionary Computation in Data Mining. Studies in Fuzziness and Soft Computing, vol 163. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-32358-9_10
Download citation
DOI: https://doi.org/10.1007/3-540-32358-9_10
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-22370-2
Online ISBN: 978-3-540-32358-7
eBook Packages: EngineeringEngineering (R0)