[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Object Recognition Using Local Affine Frames on Maximally Stable Extremal Regions

  • Chapter
Toward Category-Level Object Recognition

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4170))

Abstract

Methods based on distinguished regions (transformation covariant detectable regions) have achieved considerable success in object recognition, retrieval and matching problems in both still images and videos. The chapter focuses on a method exploiting local coordinate systems (local affine frames) established on maximally stable extremal regions. We provide a taxonomy of affine-covariant constructions of local coordinate systems, prove their affine covariance and present algorithmic details on their computation. Exploiting processes proposed for computation of affine-invariant local frames of reference, tentative region-to-region correspondences are established. Object recognition is formulated as a problem of finding a maximal set of geometrically consistent matches.

State of the art results are reported on standard, publicly available, object recognition tests (COIL-100, ZuBuD, FOCUS). Change of scale, illumination conditions, out-of-plane rotation, occlusion , locally anisotropic scale change and 3D translation of the viewpoint are all present in the test problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ballester, C., Gonzalez, M.: Affine invariant texture segmentation and shape from texture by variational methods. Journal of Mathematical Imaging and Vision 9, 141–171 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  2. Caputo, B., Hornegger, J., Paulus, D., Niemann, H.: A spin-glass markov random field for 3-D object recognition. Technical Report LME-TR-2002-01, Lehrstuhl für Mustererkennung, Institut für Informatik, Universität Erlangen-Nürnberg (2002)

    Google Scholar 

  3. Chum, O., Matas, J., Obdržálek, Š.: Enhancing RANSAC by generalized model optimization. In: Proc. of the Asian Conference on Computer Vision (ACCV), vol. 2, pp. 812–817 (January 2004)

    Google Scholar 

  4. Cohen, S.: Finding color and shape patterns in images. Technical Report STAN-CS-TR-99-1620, Stanford University (May 1999)

    Google Scholar 

  5. Douglas, D., Peucker, T.: Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. Canadian Cartographer 10, 112–122 (1973)

    Google Scholar 

  6. Ferrari, V., Tuytelaars, T., Van Gool, L.: Simultaneous object recognition and segmentation by image exploration. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 40–54. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  7. Finlayson, G., Drew, M., Funt, B.: Color constancy: Generalized diagonal transforms suffice. Journal of the Optical Society of America 11, 3011–3019 (1994)

    Article  Google Scholar 

  8. Finlayson, G., Drew, M., Funt, B.: Spectral sharpening: Sensor transformations for improved color constancy. Journal of the Optical Society of America 11, 1553–1563 (1994)

    Article  Google Scholar 

  9. Forssén, P.-E., Granlund, G.: Robust Multi-scale Extraction of Blob Features. In: Bigun, J., Gustavsson, T. (eds.) SCIA 2003. LNCS, vol. 2749, pp. 11–18. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  10. Harris, C., Stephens, M.: A combined corner and edge detector. In: Alvey Vision Conference, pp. 147–152 (1988)

    Google Scholar 

  11. Healey, G.: Using color for geometry-insensitive segmentation. Journal of the Optical Society of America 6, 86–103 (1989)

    Google Scholar 

  12. Heikkilä, J.: Pattern matching with affine moment descriptors. Pattern Recognition 37(9), 1825–1834 (2004)

    Article  MATH  Google Scholar 

  13. Jain, A.K.: Fundamentals of Digital Image Processing (1986)

    Google Scholar 

  14. Lindeberg, T.: Feature detection with automatic scale selection. International Journal on Computer Vision 30(2), 79–116 (1998)

    Article  Google Scholar 

  15. Liu, X., Srivastava, A.: A spectral representation for appearance-based classification and recognition. In: Proceedings of the International Conference on Pattern Recognition, pp. 37–40 (2002)

    Google Scholar 

  16. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal on Computer Vision 20(2), 91–110 (2004)

    Article  Google Scholar 

  17. Marée, R., Geurts, P., Piater, J., Wehenkel, L.: Random subwindows for robust image classification. In: Proceedings of the Conference on Computer Vision and Pattern Recognition (2005)

    Google Scholar 

  18. Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide-baseline stereo from maximally stable extremal regions. Image and Vision Computing 22(10), 761–767 (2004)

    Article  Google Scholar 

  19. Mikolajczyk, K., Schmid, C.: Indexing based on scale invariant interest points. In: Proceedings of the International Conference on Computer Vision, pp. 525–531 (2001)

    Google Scholar 

  20. Mikolajczyk, K., Schmid, C.: An affine invariant interest point detector. In: Proceedings of the European Conference on Computer Vision, pp. 128–142 (2002)

    Google Scholar 

  21. Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., van Gool, L.: A comparison of affine region detectors. International Journal of Computer Vision 65(7), 43–72 (2005)

    Article  Google Scholar 

  22. Mokhtarian, F., Mackworth, A.K.: A theory of multiscale, curvature-based shape representation for planar curves. IEEE Transactions on Pattern Analysis and Machine Intelligence 14(8), 789–805 (1992)

    Article  Google Scholar 

  23. Mundy, J., Zisserman, A.: Geometric Invariance in Computer Vision (1992)

    Google Scholar 

  24. Obdržálek, Š., Matas, J.: Object recognition using local affine frames on distinguished regions. In: Proceedings of the British Machine Vision Conference (2002)

    Google Scholar 

  25. Ramer, U.: An iterative procedure for the polygonal approximation of plane curves. Computer Graphics and Image Processing 1, 244–259 (1972)

    Article  Google Scholar 

  26. Shao, H., Svoboda, T., Tuytelaars, T., Van Gool, L.: HPAT indexing for fast object/scene recognition based on local appearance. In: International Conference on Image and Video Retrieval, pp. 71–80 (2003)

    Google Scholar 

  27. Shao, H., Svoboda, T., Van Gool, L.: ZuBuD — Zurich Buildings Database for Image Based Recognition. Technical Report 260, Computer Vision Laboratory, Swiss Federal Institute of Technology (March 2003), http://www.vision.ee.ethz.ch/showroom/zubud

  28. Sivic, J., Zisserman, A.: Video Google: A text retrieval approach to object matching in videos. In: Proceedings of the International Conference on Computer Vision, pp. 1470–1477 (2003)

    Google Scholar 

  29. Tuytelaars, T., Van Gool, L.: Content-based image retrieval based on local affinely invariant regions. In: Visual Information and Information Systems, pp. 493–500 (1999)

    Google Scholar 

  30. Tuytelaars, T., Van Gool, L.: Wide baseline stereo matching based on local, affinely invariant regions. In: Proceedings of the British Machine Vision Conference (2000)

    Google Scholar 

  31. Vasconcelos, N., Ho, P., Moreno, P.J.: The Kullback-Leibler kernel as a framework for discriminant and localized representations for visual recognition. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3023, pp. 430–441. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  32. Yang, M.H., Roth, D., Ahuja, N.: Learning to Recognize 3D Objects with SNoW. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1842, pp. 439–454. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Obdržálek, Š., Matas, J. (2006). Object Recognition Using Local Affine Frames on Maximally Stable Extremal Regions. In: Ponce, J., Hebert, M., Schmid, C., Zisserman, A. (eds) Toward Category-Level Object Recognition. Lecture Notes in Computer Science, vol 4170. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11957959_5

Download citation

  • DOI: https://doi.org/10.1007/11957959_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68794-8

  • Online ISBN: 978-3-540-68795-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics