[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Towards the Optimal Training of Cascades of Boosted Ensembles

  • Chapter
Toward Category-Level Object Recognition

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4170))

  • 2835 Accesses

Abstract

Cascades of boosted ensembles have become a popular technique for face detection following their introduction by Viola and Jones. Researchers have sought to improve upon the original approach by incorporating new techniques such as alternative boosting methods, feature sets, etc. We explore several avenues that have not yet received adequate attention: global cascade learning, optimal ensemble construction, stronger weak hypotheses, and feature filtering. We describe a probabilistic model for cascade performance and its use in a fully-automated training algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Blanchard, G., Geman, D.: Sequential testing designs for pattern recognition. Annals of Statistics 33(3), 1155–1202 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  2. Brubaker, S.C., Wu, J., Sun, J., Mullin, M.D., Rehg, J.M.: On the design of cascades of boosted ensembles for face detection. Technical Report GIT-GVU-05-28, Georgia Institute of Technology (2005)

    Google Scholar 

  3. Elad, M., Hel-Or, Y., Keshet, R.: Pattern detection using a maximal rejection classifier. Pattern Recognition Letters 23(12), 1459–1471 (2002)

    Article  MATH  Google Scholar 

  4. Fan, W., Stolfo, S.J., Zhang, J., Chan, P.K.: Adacost: Misclassification cost-sensitive boosting. In: Proc. 16th Int’l Conf Machine Learning, pp. 97–105 (1999)

    Google Scholar 

  5. Fleuret, F.: Fast binary feature selection with conditional mutual information. J. Mach. Learn. Res. 5, 1531–1555 (2004)

    MathSciNet  Google Scholar 

  6. Froba, B., Ernst, A.: Face detection with the modified census transform. In: 6th IEEE Int’l Conf. Automatic Face and Gesture Recognition, pp. 91–96 (May 2004)

    Google Scholar 

  7. Fukunaga, K.: Introduction to Statistical Pattern Recognition. Academic Press, San Diego (1990)

    MATH  Google Scholar 

  8. Gupta, A.K., Nadarajah, S. (eds.): Handbook of Beta Distribution and its applications. Marcel Dekker, Inc., New York (2004)

    MATH  Google Scholar 

  9. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157–1182 (2003)

    Article  MATH  Google Scholar 

  10. Heisele, B., Serre, T., Mukherjee, S., Poggio, T.: Feature reduction and hierarchy of classifiers for fast object detection in video images. In: CVPR, vol. II, pp. 18–24 (2001)

    Google Scholar 

  11. Huang, K., Yang, H., King, I., Lyu, M.R.: Learning classifiers from imbalanced data based on biased minimax probability machine. In: CVPR, vol.II, pp. 558–563 (2004)

    Google Scholar 

  12. Karakoulas, G.J., Shawe-Taylor, J.: Optimizing classifiers for imbalanced training sets. In: NIPS 11, pp. 253–259 (1999)

    Google Scholar 

  13. Keren, D., Osadchy, M., Gotsman, C.: Antifaces: A novel, fast method for image detection. IEEE Trans. on PAMI 23(7), 747–761 (2001)

    Google Scholar 

  14. Levi, K., Weiss, Y.: Learning object detection from a small number of examples: The importance of good features. In: CVPR, vol.II, pp. 53–60 (2004)

    Google Scholar 

  15. Li, S.Z., Zhang, Z.Q.: Floatboost learning and statistical face detection. IEEE Trans. on PAMI 26(9), 1112–1123 (2004)

    Google Scholar 

  16. Lienhart, R., Kuranov, A., Pisarevsky, V.: Empirical Analysis of Detection Cascades of Boosted Classifiers for Rapid Object Detection. In: Michaelis, B., Krell, G. (eds.) DAGM 2003. LNCS, vol. 2781, pp. 297–304. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  17. Liu, C., Shum, H.-Y.: Kullback-leibler boosting. In: CVPR, vol. II, pp. 587–594 (2003)

    Google Scholar 

  18. Luo, H.: Optimization design of cascaded classifiers. In: CVPR, vol.I, pp. 480–485 (2005)

    Google Scholar 

  19. Romdhani, S., Torr, P., Schoelkopf, B., Blake, A.: Computationally efficient face detection. In: Proc. ICCV, pp. 695–700 (2001)

    Google Scholar 

  20. Schapire, R.E., Singer, Y.: Improved boosting using confidence-rated predictions. Machine Learning 37(3), 297–336 (1999)

    Article  MATH  Google Scholar 

  21. Schneiderman, H.: Feature-centric evaluation for efficient cascaded object detection. In: CVPR, vol. II, pp. 29–36 (2004)

    Google Scholar 

  22. Sun, J., Rehg, J.M., Bobick, A.F.: Automatic cascade training with perturbation bias. In: CVPR, vol. II, pp. 276–283 (2004)

    Google Scholar 

  23. Sung, K., Poggio, T.: Example-based learning for view-based human face detection. IEEE Trans. on PAMI 20(1), 39–51 (1998)

    Google Scholar 

  24. Ting, K.M.: A comparative study of cost-sensitive boosting algorithms. In: Proc. 17th Int’l. Conf. Machine Learning, pp. 983–990 (2000)

    Google Scholar 

  25. Vasconcelos, N.: Feature selection by maximum marginal diversity: Optimality and implications for visual recognition. In: CVPR, vol.1, pp. 762–772 (2003)

    Google Scholar 

  26. Vidal-Naquet, M., Ullman, S.: Object recognition with informative features and linear classification. In: Proc. ICCV, pp. 281–288 (2003)

    Google Scholar 

  27. Viola, P., Jones, M.: Fast and robust classification using asymmetric AdaBoost and a detector cascade. In: NIPS 14, pp. 1311–1318 (2002)

    Google Scholar 

  28. Viola, P., Jones, M.J.: Robust real-time object detection. Technical Report CRL 2001/01, Compaq Cambridge Research Laboratory (February 2001)

    Google Scholar 

  29. Viola, P., Jones, M.J.: Robust real-time face detection. Int. J. Comput. Vision 57(2), 137–154 (2004)

    Article  Google Scholar 

  30. Wu, J., Brubaker, S.C., Mullin, M.D., Rehg, J.M.: Fast asymmetric learning for cascade face detection. Technical Report GIT-GVU-05-27, Georgia Institute of Technology (2005)

    Google Scholar 

  31. Wu, J., Mullin, M., Rehg, J.: Linear asymmetric classifier for cascade detectors. In: Proc. 22nd Int’l Conf. Machine Learning, pp. 993–1000 (2005)

    Google Scholar 

  32. Wu, J., Rehg, J.M., Mullin, M.D.: Learning a rare event detection cascade by direct feature selection. In: NIPS 16, pp. 1523–1530 (2004)

    Google Scholar 

  33. Xiao, R., Zhu, L., Zhang, H.-J.: Boosting chain learning for object detection. In: Proc. ICCV, vol. 1, pp. 709–715 (2003)

    Google Scholar 

  34. Yang, M.-H., Kriegman, D.J., Ahuja, N.: Detecting faces in images: A survey. IEEE Trans. on PAMI 24(1), 34–58 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brubaker, S.C., Wu, J., Sun, J., Mullin, M.D., Rehg, J.M. (2006). Towards the Optimal Training of Cascades of Boosted Ensembles. In: Ponce, J., Hebert, M., Schmid, C., Zisserman, A. (eds) Toward Category-Level Object Recognition. Lecture Notes in Computer Science, vol 4170. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11957959_16

Download citation

  • DOI: https://doi.org/10.1007/11957959_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68794-8

  • Online ISBN: 978-3-540-68795-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics