[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Evolutionary Bayesian Classifier-Based Optimization in Continuous Domains

  • Conference paper
Simulated Evolution and Learning (SEAL 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4247))

Included in the following conference series:

Abstract

In this work, we present a generalisation to continuous domains of an optimization method based on evolutionary computation that applies Bayesian classifiers in the learning process. The main difference between other estimation of distribution algorithms (EDAs) and this new method –known as Evolutionary Bayesian Classifier-based Optimization Algorithms (EBCOAs)– is the way the fitness function is taken into account, as a new variable, to generate the probabilistic graphical model that will be applied for sampling the next population.

We also present experimental results to compare performance of this new method with other methods of the evolutionary computation field like evolution strategies, and EDAs. Results obtained show that this new approach can at least obtain similar performance as these other paradigms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bengoetxea, E., Miquélez, T., Larrañaga, P., Lozano, J.A.: Experimental results in function optimization with EDAs in continuous domain. In: Larrañaga, P., Lozano, J.A. (eds.) Estimation of Distribution Algorithms. A New Tool for Evolutionary Computation, pp. 181–194. Kluwer Academic Publishers, Dordrecht (2001)

    Google Scholar 

  2. Cervone, G.: LEM2 Theory and Implementation of the Learnable Evolution. Technical report, Machine Learning and Inference Laboratory, George Mason University (1999)

    Google Scholar 

  3. Chow, C., Liu, C.: Approximating discrete probability distributions with dependence trees. IEEE Transactions on Information Theory 14(3), 462–467 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  4. Friedman, N., Geiger, D., Goldsmidt, M.: Bayesian network classifiers. Machine Learning 29(2), 131–163 (1997)

    Article  MATH  Google Scholar 

  5. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading (1989)

    MATH  Google Scholar 

  6. Hansen, N.: The CMA evolution strategy: A comparing review. In: Inza, I., Lozano, J.A., Larrañaga, P., Bengoetxea, E. (eds.) Towards a New Evolutionary Computation. Advances in Estimation of Distribution Algorithms, pp. 75–102. Springer, Heidelberg (2006)

    Google Scholar 

  7. Hansen, N., Kern, S.: Evaluating the CMA evolution etrategy on multimodal test functions. In: Eighth International Conference on Parallel Problem Solving from Nature – PPSN VIII, pp. 282–291 (2004)

    Google Scholar 

  8. Holland, J.H.: Adaptation in Natural and Artificial Systems. The University of Michigan Press, Michigan (1975)

    Google Scholar 

  9. Kononenko, I.: Semi-naïve Bayesian classifiers. In: Proceedings of the 6th European Working Session on Learning, Porto, Portugal, pp. 206–219 (1991)

    Google Scholar 

  10. Larrañaga, P., Lozano, J.A.: Estimation of Distribution Algorithms. A New Tool for Evolutionary Computation. Kluwer Academic Publishers, Dordrecht (2001)

    Google Scholar 

  11. Lauritzen, S.L., Wermuth, N.: Graphical models for associations between variables, some of which are qualitative and some quantitative. Annals of Statistics 17, 31–57 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  12. Llorà, X., Goldberg, D.E.: Wise breeding GA via machine learning techniques for function optimization. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 1172–1183. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  13. Lozano, J.A., Larrañaga, P., Inza, I., Bengoetxea, E.: Towards a New Evolutionary Computation. Advances in Estimation of Distribution Algorithms. Springer, Heidelberg (2006)

    Google Scholar 

  14. Michalski, R.S.: Learnable evolution model: Evolutionary processes guided by machine learning. Machine Learning 38, 9–40 (2000)

    Article  MATH  Google Scholar 

  15. Minsky, M.: Steps toward artificial intelligence. Transactions on Institute of Radio Engineers 49, 8–30 (1961)

    MathSciNet  Google Scholar 

  16. Miquélez, T., Bengoetxea, E., Larrañaga, P.: Evolutionary computation based on Bayesian classifiers. International Journal of Applied Mathematics and Computer Science 14(3), 335–349 (2004)

    MATH  MathSciNet  Google Scholar 

  17. Mühlenbein, H., Mahning, T., Ochoa, A.: Schemata, distributions and graphical models in evolutionary optimization. Journal of Heuristics 5(2), 215–247 (1999)

    Article  MATH  Google Scholar 

  18. Mühlenbein, H., Paaß, G.: From recombination of genes to the estimation of distributions: I. Binary parameters. In: Asplund, L. (ed.) Ada-Europe 1998. LNCS, vol. 1411, pp. 178–187. Springer, Heidelberg (1998)

    Google Scholar 

  19. Pazzani, M.: Searching for dependencies in Bayesian classifiers. In: Fisher, D., Lenz, H.-J. (eds.) Learning from Data: Artificial Intelligence and Statistics V, pp. 239–248. Springer, New York (1997)

    Google Scholar 

  20. Pelikan, M.: Hierarchical Bayesian Optimization Algorithm: Toward a New Generation of Evolutionary Algorithms. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  21. Schwefel, H.-P.: Evolution and Optimum Seeking. Wiley, Chichester (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Miquélez, T., Bengoetxea, E., Larrañaga, P. (2006). Evolutionary Bayesian Classifier-Based Optimization in Continuous Domains. In: Wang, TD., et al. Simulated Evolution and Learning. SEAL 2006. Lecture Notes in Computer Science, vol 4247. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11903697_67

Download citation

  • DOI: https://doi.org/10.1007/11903697_67

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-47331-2

  • Online ISBN: 978-3-540-47332-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics