Abstract
In this work, we present a generalisation to continuous domains of an optimization method based on evolutionary computation that applies Bayesian classifiers in the learning process. The main difference between other estimation of distribution algorithms (EDAs) and this new method –known as Evolutionary Bayesian Classifier-based Optimization Algorithms (EBCOAs)– is the way the fitness function is taken into account, as a new variable, to generate the probabilistic graphical model that will be applied for sampling the next population.
We also present experimental results to compare performance of this new method with other methods of the evolutionary computation field like evolution strategies, and EDAs. Results obtained show that this new approach can at least obtain similar performance as these other paradigms.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bengoetxea, E., Miquélez, T., Larrañaga, P., Lozano, J.A.: Experimental results in function optimization with EDAs in continuous domain. In: Larrañaga, P., Lozano, J.A. (eds.) Estimation of Distribution Algorithms. A New Tool for Evolutionary Computation, pp. 181–194. Kluwer Academic Publishers, Dordrecht (2001)
Cervone, G.: LEM2 Theory and Implementation of the Learnable Evolution. Technical report, Machine Learning and Inference Laboratory, George Mason University (1999)
Chow, C., Liu, C.: Approximating discrete probability distributions with dependence trees. IEEE Transactions on Information Theory 14(3), 462–467 (1968)
Friedman, N., Geiger, D., Goldsmidt, M.: Bayesian network classifiers. Machine Learning 29(2), 131–163 (1997)
Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading (1989)
Hansen, N.: The CMA evolution strategy: A comparing review. In: Inza, I., Lozano, J.A., Larrañaga, P., Bengoetxea, E. (eds.) Towards a New Evolutionary Computation. Advances in Estimation of Distribution Algorithms, pp. 75–102. Springer, Heidelberg (2006)
Hansen, N., Kern, S.: Evaluating the CMA evolution etrategy on multimodal test functions. In: Eighth International Conference on Parallel Problem Solving from Nature – PPSN VIII, pp. 282–291 (2004)
Holland, J.H.: Adaptation in Natural and Artificial Systems. The University of Michigan Press, Michigan (1975)
Kononenko, I.: Semi-naïve Bayesian classifiers. In: Proceedings of the 6th European Working Session on Learning, Porto, Portugal, pp. 206–219 (1991)
Larrañaga, P., Lozano, J.A.: Estimation of Distribution Algorithms. A New Tool for Evolutionary Computation. Kluwer Academic Publishers, Dordrecht (2001)
Lauritzen, S.L., Wermuth, N.: Graphical models for associations between variables, some of which are qualitative and some quantitative. Annals of Statistics 17, 31–57 (1989)
Llorà, X., Goldberg, D.E.: Wise breeding GA via machine learning techniques for function optimization. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 1172–1183. Springer, Heidelberg (2003)
Lozano, J.A., Larrañaga, P., Inza, I., Bengoetxea, E.: Towards a New Evolutionary Computation. Advances in Estimation of Distribution Algorithms. Springer, Heidelberg (2006)
Michalski, R.S.: Learnable evolution model: Evolutionary processes guided by machine learning. Machine Learning 38, 9–40 (2000)
Minsky, M.: Steps toward artificial intelligence. Transactions on Institute of Radio Engineers 49, 8–30 (1961)
Miquélez, T., Bengoetxea, E., Larrañaga, P.: Evolutionary computation based on Bayesian classifiers. International Journal of Applied Mathematics and Computer Science 14(3), 335–349 (2004)
Mühlenbein, H., Mahning, T., Ochoa, A.: Schemata, distributions and graphical models in evolutionary optimization. Journal of Heuristics 5(2), 215–247 (1999)
Mühlenbein, H., Paaß, G.: From recombination of genes to the estimation of distributions: I. Binary parameters. In: Asplund, L. (ed.) Ada-Europe 1998. LNCS, vol. 1411, pp. 178–187. Springer, Heidelberg (1998)
Pazzani, M.: Searching for dependencies in Bayesian classifiers. In: Fisher, D., Lenz, H.-J. (eds.) Learning from Data: Artificial Intelligence and Statistics V, pp. 239–248. Springer, New York (1997)
Pelikan, M.: Hierarchical Bayesian Optimization Algorithm: Toward a New Generation of Evolutionary Algorithms. Springer, Heidelberg (2005)
Schwefel, H.-P.: Evolution and Optimum Seeking. Wiley, Chichester (1995)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Miquélez, T., Bengoetxea, E., Larrañaga, P. (2006). Evolutionary Bayesian Classifier-Based Optimization in Continuous Domains. In: Wang, TD., et al. Simulated Evolution and Learning. SEAL 2006. Lecture Notes in Computer Science, vol 4247. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11903697_67
Download citation
DOI: https://doi.org/10.1007/11903697_67
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-47331-2
Online ISBN: 978-3-540-47332-9
eBook Packages: Computer ScienceComputer Science (R0)