[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

SNP-Converter: An Ontology-Based Solution to Reconcile Heterogeneous SNP Descriptions for Pharmacogenomic Studies

  • Conference paper
Data Integration in the Life Sciences (DILS 2006)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4075))

Included in the following conference series:

Abstract

Pharmacogenomics explores the impact of individual genomic variations in health problems such as adverse drug reactions. Records of millions of genomic variations, mostly known as Single Nucleotide Polymorphisms (SNP), are available today in various overlapping and heterogeneous databases. Selecting and extracting from these databases or from private sources a proper set of polymorphisms are the first steps of a KDD (Knowledge Discovery in Databases) process in pharmacogenomics. It is however a tedious task hampered by the heterogeneity of SNP nomenclatures and annotations. Standards for representing genomic variants have been proposed by the Human Genome Variation Society (HGVS). The SNP-Converter application is aimed at converting any SNP description into an HGVS-compliant pivot description and vice versa. Used in the frame of a knowledge system, the SNP-Converter application contributes as a wrapper to semantic data integration and enrichment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kruglyak, L., Nickerson, D.: Variation is the spice of life. Nat. Genet. 27(3), 234–236 (2001)

    Article  Google Scholar 

  2. Frawley, W., Piatetsky-Shapiro, G., Matheus, C.: Knowledge Discovery in databases: An Overview. In: Knowledge Discovery in Databases, pp. 1–30. AAAI/MIT Press (1991)

    Google Scholar 

  3. Janetzko, D., Cherfi, H., Kennke, R., Napoli, A., Toussaint, Y.: Knowledge-based Selection of Association Rules for Text Mining. In: 16th European Conference on Artificial Intelligence, ECAI 2004, Valencia (2004)

    Google Scholar 

  4. Vetere, G., Lenzerini, M.: Models for Semantic. Interoperability in Service Oriented Architectures. IBM Systems Journal 44 (2005)

    Google Scholar 

  5. Gruber, T.R.: A Translation Approach to Portable Ontology Specifications. Knowledge Acquisition 5, 199–220 (1993)

    Article  Google Scholar 

  6. Evans, W., Relling, M.: Pharmacogenomics: moving toward individualized medicine. Nature. 29, 464–468 (2004)

    Article  Google Scholar 

  7. Klein, T., Chang, J., Cho, M., Easton, K., Fergerson, R., Hewett, M., Lin, Z., Liu, Y., Liu, S., Oliver, D., et al.: Integrating genotype and phenotype information: an overview of the PharmGKB project. Pharmacogenom. J. 1, 167–170 (2001)

    Google Scholar 

  8. Marsh, S., Kwok, P., McLeod, H.: SNP databases and pharmacogenetics: great start, but a long way to go. Hum. Mutat. 20(3), 174–179 (2002)

    Article  Google Scholar 

  9. Coulet, A., Smaïl-Tabbone, M., Napoli, A., Benlian, P., Devignes, M.D.: SNPOntology for semantic integration of genomic variation data. In: ISMB 2006, Fortaleza (2006), https://hal.inria.fr/inria-00067863

  10. Anand, S., Bell, D., Hughes, J.: The role of domain knowledge in data mining. In: Conference on Information and Knowledge Management CIKM 1995, Baltimore, USA (1995)

    Google Scholar 

  11. Euler, T., Scholz, M.: Using Ontologies in a KDD workbench. In: ECML/PKDD 2004 Workshop on Knowledge Discovery and Ontologies (KDO 2004), Pisa (2004)

    Google Scholar 

  12. Catarci, T., Lenzerini, M.: Representing and using inter-schema knowledge in cooperative information systems. Journal of Intelligent and Cooperative Information Systems 2, 375–398 (1993)

    Article  Google Scholar 

  13. Levy, A.: Logic-Based Techniques in Data Integration Logic Based Artificial Intelligence. Jack Minker. Kluwer Publishers, Dordrecht (2000)

    Google Scholar 

  14. den Dunnen, J., Antonarakis, S.: Mutation nomenclature extensions and suggestions to describe complex mutations: a discussion. Hum. Mutat. 15, 7–12 (2000)

    Article  Google Scholar 

  15. den Dunnen, J., Paalman, M.: Standardizing mutation nomenclature: why bother? Hum. Mutat. 22, 181–182 (2003)

    Article  Google Scholar 

  16. Cotton, R.G.H., Kazazian, H.H.: Toward a human variome project. Hum. Mutat. 26(6), 499 (2005)

    Article  Google Scholar 

  17. Sherry, S., Ward, M., Sirotkin, K.: dbSNP—Database for Single Nucleotide Polymorphisms and Other Classes of Minor Genetic Variation. Genome. Res. 9, 677–679 (1999)

    Google Scholar 

  18. Fredman, D., Munns, G., Rios, D., Sjoholm, F., Siegfried, M., Lenhard, B., Lehvaslaiho, H., Brookes, A.: HGVbase: a curated resource describing human DNA variation and phenotype relationships. Nucleic Acids Res. 32, D516–519 (2004)

    Article  Google Scholar 

  19. Hemminger, B., Saelim, B., Sullivan, P.: TAMAL: an integrated approach to chosing SNPs for genetics studies of human compex traits. Bioinformatics 22, 626–627 (2006)

    Article  Google Scholar 

  20. Karchin, R., Diekhaux, M., Kelly, L., Thomas, D., Pieper, U., Eswar, N., Haussler, D., Sali, A.: LS-SNP: large-scale annotation of coding non-synonymous SNPs based on multiple information sources. Bioinformatics 21, 2814–2820 (2005)

    Article  Google Scholar 

  21. Sugawara, H., Mizushima, H., Kano, T., Shigemoto, Y., Hashimoto, Y., Tomabechi, I., Sakagami, N., et al.: Polymorphism Markup Language (PML) for the interoperability of data on SNPs and other sequence variations. In: 19th International CODATA Conference (2004)

    Google Scholar 

  22. OMG Single Nucleotide Polymorphisms specification (2005), http://www.omg.org/cgi-bin/doc/dtc/05-02-06.pdf

  23. Oliver, D., Rubin, D., Stuart, J., Hewett, M., Klein, T., Altman, R.: Ontology development for a pharmacogenetics knowledge base. In: Pac. Symp. Biocomput., pp. 65–76 (2002)

    Google Scholar 

  24. Horrocks, P., Patel-Schneider, F., van Harmelen, F.: From SHIQ and RDF to OWL: The making of a web ontology language. Journal of Web Semantics 1(1), 7–26 (2003)

    Google Scholar 

  25. Noy, N., Sintek, M., Decker, S., et al.: Creating Semantic Web contents with Protege-2000. IEEE Intelligent Systems 16, 60–71 (2001)

    Article  Google Scholar 

  26. W3C Web Ontology Working Group (WOWG), Owl web ontology language semantics and abstract syntax. W3C recommendation (2004), http://www.w3.org/TR/owl-ref/

  27. Kasprzyk, A., Keefe, D., Smedley, D., London, D., Spooner, W., Melsopp, C., Hammond, M., Rocca-Serra, P., Cox, T., Birney, E.: EnsMart: A Generic System for Fast and Flexible Access to Biological Data. Genome Res. 14, 160–169 (2004)

    Article  Google Scholar 

  28. Cheung, K.H., Kevin, Y., Yip, K.Y., Smith, A., de Knikker, R., Masiar, A., Gerstein, M.: YeastHub: a semantic web use case for integrating data in the life sciences domain. Bioinformatics 21(28), i85–i96 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Coulet, A., Smaïl-Tabbone, M., Benlian, P., Napoli, A., Devignes, MD. (2006). SNP-Converter: An Ontology-Based Solution to Reconcile Heterogeneous SNP Descriptions for Pharmacogenomic Studies. In: Leser, U., Naumann, F., Eckman, B. (eds) Data Integration in the Life Sciences. DILS 2006. Lecture Notes in Computer Science(), vol 4075. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11799511_8

Download citation

  • DOI: https://doi.org/10.1007/11799511_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-36593-8

  • Online ISBN: 978-3-540-36595-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics