Abstract
In this paper, a new approach to binarize grey-level document images is proposed. The method combines a global and a local approaches. First, we provide the edges of the image, and next, from the edges we make a quadtree decomposition of the image. On each area of the image, a local threshold is computed and applied to all the pixels belonging to the region under consideration.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Canny, J.F.: A computational approach to edge detection. IEEE Transaction on PAMI 8(6), 679–698 (1986)
Chang, F., Liang, K.-H., Tan, T.-M., Hwang, W.-L.: Binarization of documents images using Hadamard multi-resolution analysis. In: Proceedings of 5th International Conference on Document Analysis and Recognition, Bangalore, India, September 1999, pp. 157–160 (1999)
Cheng, H.D., Chen, Y.-H.: Fuzzy partition of two-dimensional histogram and its application to thresholding. Pattern recognition 32, 825–843 (1999)
Cho, S., Haralick, R., Yi, S.: Improvement of Kittler and Illingworth’s minimum error thresholding. Pattern Recognation 22, 609–617 (1989)
Deriche, R.: Using Canny’s criteria to derive a recursively implemented optimal edge detector. The International Journal of Computer Vision 1(2), 167–187 (1987)
Gadi, T., Benslimane, R.: Fuzzy hierarchical segmentation (in French). Traitement du signal 17(1) (2000)
Kurita, T., Otsu, N., Abdelmalek, N.: Maximum likelihood thresholding based on population mixture models. Pattern Recognition 10, 1231–1240 (1992)
Levine, M.D., Nazif, A.M.: Dynamic measurement of computer generated image segmentation. IEEE Transactions on PAMI 7(2), 155–164 (1985)
Mardia, K.V., Hainsworth, T.J.: A spatial thresholding method for image segmentation. IEEE Transactions of PAMI 10(6), 919–926 (1988)
Otsu, N.: A threshold selection method for grey-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9, 62–66 (1979)
Parker, J.: Algorithms for Image processing and computer vision, Wiley Editions (1996)
Sauvola, J., Pietikainen, M.: Adaptative document image binarization. Pattern Recognition 33, 225–236 (2000)
Tabbone, S., Wendling, L.: Multi-Scale binarization of images. Pattern Recognation Letters 24, 403–411 (2001)
Tsai, W.: Moment-preserving thresholding: a new approach. Computer Vision, Graphics and Image Processing 29, 377–393 (1985)
Trier, D., Taxt, T.: Improvement of “integrated function algorithm” for binarization of document images. Pattern Recognition Letters 16, 277–283 (1995a)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gabarra, E., Tabbone, A. (2005). Combining Global and Local Threshold to Binarize Document of Images. In: Marques, J.S., Pérez de la Blanca, N., Pina, P. (eds) Pattern Recognition and Image Analysis. IbPRIA 2005. Lecture Notes in Computer Science, vol 3523. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11492542_46
Download citation
DOI: https://doi.org/10.1007/11492542_46
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-26154-4
Online ISBN: 978-3-540-32238-2
eBook Packages: Computer ScienceComputer Science (R0)