Abstract
This article presents experiments aiming at testing the effectiveness of the implemented low-level descriptors for automatic recognition of musical instruments and musical styles. The paper discusses first some problems in audio information analysis related to MPEG-7-based applications. A short overview of the MPEG-7 standard focused on audio information description is also given. System assumptions for automatic identification of music and musical instrument sounds are presented. A discussion on the influence of descriptor selection process on the classification accuracy is included. Experiments are carried out basing on a decision system employing Rough Sets (RS) and Artificial Neural Networks (ANNs).
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bazan, J.G., Szczuka, M.S.: RSES and RSESlib - A Collection of Tools for Rough Set Computations. In: Ziarko, W.P., Yao, Y. (eds.) RSCTC 2000. LNCS (LNAI), vol. 2005, p. 106. Springer, Heidelberg (2001)
Bazan, J.G., Szczuka, M.S., Wróblewski, J.: A New Version of Rough Set Exploration System. In: Alpigini, J.J., Peters, J.F., Skowron, A., Zhong, N. (eds.) RSCTC 2002. LNCS (LNAI), vol. 2475, pp. 397–404. Springer, Heidelberg (2002)
Brown, J.C.: Computer identification of musical instruments using pattern recognition with cepstral coefficients as features. J. Acoust. Soc. of America 105, 1933–1941 (1999)
Czyzewski, A., Szczerba, M., Kostek, B.: Musical Phrase Representation and Recognition by Means of Neural Networks and Rough Sets. Transactions on Rough Sets, 259–284 (2004)
Eronen, A., Klapuri, A.: Musical instrument recognition using cepstral coefficients and temporal features. In: Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing ICASSP 2000, vol. 2, p. 753–756 (2000)
Eronen, A.: Comparison of Features for Musical instrument recognition. In: Proc. IEEE Workshop on the Applicationis of Signal Processing to Audio and Acoustics, pp. 19–22 (2001)
Herrera, P., Peeters, G., Dubnov, S.: Automatic classification of musical instrument sounds. J. of New Music Research 32(19), 3–21 (2003)
http://logic.mimuw.edu.pl/~rses/ (RSES homepage)
Hunter, J.: An overview of the MPEG-7 Description Definition Language (DDL). IEEE Transactions on Circuits and Systems for Video Technology 11(6), 765–772 (2001)
Kaminskyj, I.: Automatic Musical Vibrato Detection System. In: Proc. ACMA Conference, pp. 9–15 (1998)
Komorowski, J., Pawlak, Z., Polkowski, L., Skowron, A.: Rough Sets: A Tutorial. In: Pal, S.K., Skowron, A. (eds.) Rough Fuzzy Hybridization: A New Trend in Decision-Making, pp. 3–98. Springer, Heidelberg (1998)
Kostek, B.: Soft Computing in Acoustics, Applications of Neural Networks. In: Fuzzy Logic and Rough Sets to Musical Acoustics, Physica Verlag, Heidelberg (1999)
Kostek, B., Czyzewski, A.: Representing Musical Instrument Sounds for their Automatic Classification. J. Audio Eng. Soc. 49(9), 768–785 (2001)
Kostek, B., Zwan, P.: Wavelet-based automatic recognition of musical instruments. In: Proc. 142nd Meeting of the Acoustical Soc. of America, Fort Lauderdale, Florida, USA, December 3–7, p. 2754 (2001)
Kostek, B., Szczuko, P., Zwan, P.: Processing of Musical Data Employing Rough Sets and Artificial Neural Networks. In: Tsumoto, S., Słowiński, R., Komorowski, J., Grzymała-Busse, J.W. (eds.) RSCTC 2004. LNCS (LNAI), vol. 3066, pp. 539–548. Springer, Heidelberg (2004)
Kostek, B., Czyzewski, A.: Processing of Musical Metadata Employing Pawlak’s Flow Graphs. In: Peters, J.F., Skowron, A., Grzymała-Busse, J.W., Kostek, B.z., Świniarski, R.W., Szczuka, M.S. (eds.) Transactions on Rough Sets I. LNCS, vol. 3100, pp. 285–305. Springer, Heidelberg (2004)
Kostek, B.: Musical Instrument Classification and Duet Analysis Employing Music Information Retrieval Techniques. Proc. of the IEEE 92(4), 712–729 (2004)
Lindsay, A.T., Herre, J.: MPEG-7 and MPEG-7 Audio – An Overview. J. Audio Eng. Soc. 49(7/8), 589–594 (2001)
Martin, K.D., Kim, Y.E.: Musical instrument identification: A pattern-recognition approach. In: Proc. 136th Meeting, J. Acoust. Soc. of America 103, 1768 (1998)
Opolko, F., Wapnick, J.: MUMS – McGill University Master Samples. CD’s (1987)
Pal, S.K., Polkowski, L., Skowron, A.: Rough-Neural Computing. Techniques for Computing with Words, Springer, Heidelberg (2004)
Pawlak, Z.: Rough Sets. International J. Computer and Information Sciences 11(5) (1982)
Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning About Data. Kluwer, Boston (1991)
Pawlak, Z.: Probability, Truth and Flow Graph. Electronic Notes in Theoretical Computer Science 82(4) (2003)
Pawlak, Z.: Elementary Rough Set Granules: Towards a Rough Set Processor. In: Pal, S.K., Polkowski, L., Skowron, A. (eds.) Rough-Neural Computing. Techniques for Computing with Words, pp. 5–13. Springer, Heidelberg (2004)
Peters, J.F., Skowron, A., Grzymala-Busse, J.W., Kostek, B.z., Świniarski, R.W., Szczuka, M.S. (eds.): Transactions on Rough Sets I. LNCS, vol. 3100. Springer, Heidelberg (2004)
Polkowski, L., Skowron, A.: Rough sets: A perspective. In: Polkowski, L., Skowron, A. (eds.) Rough Sets in Knowledge Discovery 1: Methodology and Applications, pp. 31–56. Physica-Verlag, Heidelberg (1998)
Szczuko, P., Dalka, P., Dabrowski, M., Kostek, B.: MPEG-7-based Low-Level Descriptor Effectiveness in the Automatic Musical Sound Classification. In: 116 Audio Eng. Convention, Preprint No. 6105, Berlin (2004)
Wieczorkowska, A., Wróblewski, J., Synak, P., Ślęzak, D.: Application of temporal descriptors to musical instrument sound recognition. J. of Intelligent Information Systems 21(1), 71–93 (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kostek, B., Szczuko, P., Żwan, P., Dalka, P. (2005). Processing of Musical Data Employing Rough Sets and Artificial Neural Networks. In: Peters, J.F., Skowron, A. (eds) Transactions on Rough Sets III. Lecture Notes in Computer Science, vol 3400. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11427834_5
Download citation
DOI: https://doi.org/10.1007/11427834_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-25998-5
Online ISBN: 978-3-540-31850-7
eBook Packages: Computer ScienceComputer Science (R0)