[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Processing of Musical Data Employing Rough Sets and Artificial Neural Networks

  • Conference paper
Transactions on Rough Sets III

Part of the book series: Lecture Notes in Computer Science ((TRS,volume 3400))

Abstract

This article presents experiments aiming at testing the effectiveness of the implemented low-level descriptors for automatic recognition of musical instruments and musical styles. The paper discusses first some problems in audio information analysis related to MPEG-7-based applications. A short overview of the MPEG-7 standard focused on audio information description is also given. System assumptions for automatic identification of music and musical instrument sounds are presented. A discussion on the influence of descriptor selection process on the classification accuracy is included. Experiments are carried out basing on a decision system employing Rough Sets (RS) and Artificial Neural Networks (ANNs).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bazan, J.G., Szczuka, M.S.: RSES and RSESlib - A Collection of Tools for Rough Set Computations. In: Ziarko, W.P., Yao, Y. (eds.) RSCTC 2000. LNCS (LNAI), vol. 2005, p. 106. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  2. Bazan, J.G., Szczuka, M.S., Wróblewski, J.: A New Version of Rough Set Exploration System. In: Alpigini, J.J., Peters, J.F., Skowron, A., Zhong, N. (eds.) RSCTC 2002. LNCS (LNAI), vol. 2475, pp. 397–404. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  3. Brown, J.C.: Computer identification of musical instruments using pattern recognition with cepstral coefficients as features. J. Acoust. Soc. of America 105, 1933–1941 (1999)

    Article  Google Scholar 

  4. Czyzewski, A., Szczerba, M., Kostek, B.: Musical Phrase Representation and Recognition by Means of Neural Networks and Rough Sets. Transactions on Rough Sets, 259–284 (2004)

    Google Scholar 

  5. Eronen, A., Klapuri, A.: Musical instrument recognition using cepstral coefficients and temporal features. In: Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing ICASSP 2000, vol. 2, p. 753–756 (2000)

    Google Scholar 

  6. Eronen, A.: Comparison of Features for Musical instrument recognition. In: Proc. IEEE Workshop on the Applicationis of Signal Processing to Audio and Acoustics, pp. 19–22 (2001)

    Google Scholar 

  7. Herrera, P., Peeters, G., Dubnov, S.: Automatic classification of musical instrument sounds. J. of New Music Research 32(19), 3–21 (2003)

    Article  Google Scholar 

  8. http://logic.mimuw.edu.pl/~rses/ (RSES homepage)

  9. http://www.meta-labs.com/mpeg-7-aud

  10. http://www.gracenote.com

  11. http://www.ismir.net

  12. Hunter, J.: An overview of the MPEG-7 Description Definition Language (DDL). IEEE Transactions on Circuits and Systems for Video Technology 11(6), 765–772 (2001)

    Article  Google Scholar 

  13. Kaminskyj, I.: Automatic Musical Vibrato Detection System. In: Proc. ACMA Conference, pp. 9–15 (1998)

    Google Scholar 

  14. Komorowski, J., Pawlak, Z., Polkowski, L., Skowron, A.: Rough Sets: A Tutorial. In: Pal, S.K., Skowron, A. (eds.) Rough Fuzzy Hybridization: A New Trend in Decision-Making, pp. 3–98. Springer, Heidelberg (1998)

    Google Scholar 

  15. Kostek, B.: Soft Computing in Acoustics, Applications of Neural Networks. In: Fuzzy Logic and Rough Sets to Musical Acoustics, Physica Verlag, Heidelberg (1999)

    Google Scholar 

  16. Kostek, B., Czyzewski, A.: Representing Musical Instrument Sounds for their Automatic Classification. J. Audio Eng. Soc. 49(9), 768–785 (2001)

    Google Scholar 

  17. Kostek, B., Zwan, P.: Wavelet-based automatic recognition of musical instruments. In: Proc. 142nd Meeting of the Acoustical Soc. of America, Fort Lauderdale, Florida, USA, December 3–7, p. 2754 (2001)

    Google Scholar 

  18. Kostek, B., Szczuko, P., Zwan, P.: Processing of Musical Data Employing Rough Sets and Artificial Neural Networks. In: Tsumoto, S., Słowiński, R., Komorowski, J., Grzymała-Busse, J.W. (eds.) RSCTC 2004. LNCS (LNAI), vol. 3066, pp. 539–548. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  19. Kostek, B., Czyzewski, A.: Processing of Musical Metadata Employing Pawlak’s Flow Graphs. In: Peters, J.F., Skowron, A., Grzymała-Busse, J.W., Kostek, B.z., Świniarski, R.W., Szczuka, M.S. (eds.) Transactions on Rough Sets I. LNCS, vol. 3100, pp. 285–305. Springer, Heidelberg (2004)

    Google Scholar 

  20. Kostek, B.: Musical Instrument Classification and Duet Analysis Employing Music Information Retrieval Techniques. Proc. of the IEEE 92(4), 712–729 (2004)

    Article  Google Scholar 

  21. Lindsay, A.T., Herre, J.: MPEG-7 and MPEG-7 Audio – An Overview. J. Audio Eng. Soc. 49(7/8), 589–594 (2001)

    Google Scholar 

  22. Martin, K.D., Kim, Y.E.: Musical instrument identification: A pattern-recognition approach. In: Proc. 136th Meeting, J. Acoust. Soc. of America 103, 1768 (1998)

    Google Scholar 

  23. Opolko, F., Wapnick, J.: MUMS – McGill University Master Samples. CD’s (1987)

    Google Scholar 

  24. Pal, S.K., Polkowski, L., Skowron, A.: Rough-Neural Computing. Techniques for Computing with Words, Springer, Heidelberg (2004)

    Google Scholar 

  25. Pawlak, Z.: Rough Sets. International J. Computer and Information Sciences 11(5) (1982)

    Google Scholar 

  26. Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning About Data. Kluwer, Boston (1991)

    MATH  Google Scholar 

  27. Pawlak, Z.: Probability, Truth and Flow Graph. Electronic Notes in Theoretical Computer Science 82(4) (2003)

    Google Scholar 

  28. Pawlak, Z.: Elementary Rough Set Granules: Towards a Rough Set Processor. In: Pal, S.K., Polkowski, L., Skowron, A. (eds.) Rough-Neural Computing. Techniques for Computing with Words, pp. 5–13. Springer, Heidelberg (2004)

    Google Scholar 

  29. Peters, J.F., Skowron, A., Grzymala-Busse, J.W., Kostek, B.z., Świniarski, R.W., Szczuka, M.S. (eds.): Transactions on Rough Sets I. LNCS, vol. 3100. Springer, Heidelberg (2004)

    Google Scholar 

  30. Polkowski, L., Skowron, A.: Rough sets: A perspective. In: Polkowski, L., Skowron, A. (eds.) Rough Sets in Knowledge Discovery 1: Methodology and Applications, pp. 31–56. Physica-Verlag, Heidelberg (1998)

    Google Scholar 

  31. Szczuko, P., Dalka, P., Dabrowski, M., Kostek, B.: MPEG-7-based Low-Level Descriptor Effectiveness in the Automatic Musical Sound Classification. In: 116 Audio Eng. Convention, Preprint No. 6105, Berlin (2004)

    Google Scholar 

  32. Wieczorkowska, A., Wróblewski, J., Synak, P., Ślęzak, D.: Application of temporal descriptors to musical instrument sound recognition. J. of Intelligent Information Systems 21(1), 71–93 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kostek, B., Szczuko, P., Żwan, P., Dalka, P. (2005). Processing of Musical Data Employing Rough Sets and Artificial Neural Networks. In: Peters, J.F., Skowron, A. (eds) Transactions on Rough Sets III. Lecture Notes in Computer Science, vol 3400. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11427834_5

Download citation

  • DOI: https://doi.org/10.1007/11427834_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25998-5

  • Online ISBN: 978-3-540-31850-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics