Abstract
From the granular computing perspective, the existing notions of validity, confidence, and coverage of rules in approximation spaces may be viewed as too crisp since granularity of the space is not, in general, taken into account in their definitions. In this article, an extension of the classical approach to a general rough case is discussed. We introduce and investigate graded validity, confidence, and coverage of rules as examples of rough validity, confidence, and coverage, respectively. The graded notions are based on the concepts of graded meaning of formulas and sets of formulas, studied in our earlier works. Among others, the notions of graded validitity, confidence, and coverage refine and extend the classical forms by taking into account granules of information drawn toward objects of an approximation space.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
An, A., Cercone, N.: Rule quality measures for rule induction systems: Description and evaluation. J. Comput. Intelligence 17, 409–424 (2001)
Bruha, I.: Quality of decision rules: Definitions and classification schemes for multiple rules. In: Nakhaeizadeh, G., Taylor, C.C. (eds.) Machine Learning and Statistics, The Interface, pp. 107–131. John Wiley & Sons, New York (1997)
Stepaniuk, J.: Knowledge discovery by application of rough set models. In: Polkowski, L., Tsumoto, S., Lin, T.Y. (eds.) Rough Set Methods and Applications: New Developments in Knowledge Discovery in Information Systems, pp. 137–233. Physica, Heidelberg (2001)
Skowron, A., Stepaniuk, J.: Tolerance approximation spaces. Fundamenta Informaticae 27, 245–253 (1996)
Stepaniuk, J.: Approximation spaces, reducts and representatives. In: Polkowski, L., Skowron, A. (eds.) Rough Sets in Knowledge Discovery, vol. 2, pp. 109–126. Physica, Heidelberg (1998)
Polkowski, L., Skowron, A.: Rough sets: A perspective. In: Polkowski, L., Skowron, A. (eds.) Rough Sets in Knowledge Discovery, pp. 31–56. Physica, Heidelberg (1998)
Polkowski, L., Skowron, A.: Towards adaptive calculus of granules. In: Zadeh, L.A., Kacprzyk, J. (eds.) Computing with Words in Information/Intelligent Systems, vol. 1, pp. 201–228. Physica, Heidelberg (1999)
Polkowski, L., Skowron, A.: Rough mereological calculi of granules: A rough set approach to computation. J. Comput. Intelligence 17, 472–492 (2001)
Polkowski, L., Skowron, A.: Rough mereology. LNCS (LNAI), vol. 869, pp. 85–94. Springer, Heidelberg (1994)
Polkowski, L., Skowron, A.: Rough mereology: A new paradigm for approximate reasoning. Int. J. Approximated Reasoning 15, 333–365 (1996)
Polkowski, L., Skowron, A.: Rough mereology in information systems. A case study: Qualitative spatial reasoning. In: Polkowski, L., Tsumoto, S., Lin, T.Y. (eds.) Rough Set Methods and Applications: New Developments in Knowledge Discovery in Information Systems, pp. 89–135. Physica, Heidelberg (2001)
Gomolińska, A.: A graded meaning of formulas in approximation spaces. Fundamenta Informaticae 60, 159–172 (2004)
Pawlak, Z.: Mathematical Foundations of Information Retrieval. CC PAS Report, Warsaw, vol. 101 (1973)
Pawlak, Z.: Information systems – Theoretical foundations. Information Systems 6, 205–218 (1981)
Pawlak, Z.: Information Systems. In: Theoretical Foundations. Wydawnictwo Naukowo-Techniczne, Warsaw (1983) (In Polish)
Pawlak, Z.: Rough sets. Int. J. Computer and Information Sciences 11, 341–356 (1982)
Pawlak, Z.: Rough Sets. In: Theoretical Aspects of Reasoning About Data, Kluwer, Dordrecht (1991)
Pawlak, Z.: Rough sets and decision tables. LNCS, vol. 208, pp. 186–196. Springer, Berlin (1985)
Pawlak, Z.: On decision tables. Bull. Polish Acad. Sci. Tech. 34, 553–572 (1986)
Pawlak, Z.: Decision tables – A rough set approach. Bull. EATCS 33, 85–96 (1987)
Pawlak, Z.: Bayes’ theorem – The rough set perspective. In: Inuiguchi, M., Hirano, S., Tsumoto, S. (eds.) Rough Set Theory and Granular Computing. Studies in Fuzziness and Soft Computing, vol. 125, pp. 1–12. Springer, Heidelberg (2003)
Skowron, A., Stepaniuk, J.: Generalized approximation spaces. In: Proc. 3rd Int. Workshop on Rough Sets and Soft Computing, San Jose, November 10-12, pp. 156–163 (1994)
Peters, J.F.: Approximation space for intelligent system design patterns. Engineering Applications of Artificial Intelligence 17, 1–8 (2004)
Skowron, A., Stepaniuk, J.: Generalized approximation spaces. In: Lin, T.Y., Wildberger, A.M. (eds.) Soft Computing, Simulation Councils, San Diego, pp. 18–21 (1995)
Skowron, A., Stepaniuk, J.: Information granules and approximation spaces. In: Proc. 7th Int. Conf. on Information Processing and Management of Uncertainty in Knowledge-based Systems (IPMU 1998), Paris, France, July 8-10, pp. 354–361 (1998)
Zadeh, L.A.: Outline of a new approach to the analysis of complex system and decision processes. IEEE Trans. on Systems, Man, and Cybernetics 3, 28–44 (1973)
Lin, T.Y.: Granular computing on binary relations I: Data mining and neighborhood systems. In: Polkowski, L., Skowron, A. (eds.) Rough Sets in Knowledge Discovery, vol. 1, pp. 107–121. Physica, Heidelberg (1998)
Lukasiewicz, J.: Die logischen Grundlagen der Wahrscheinlichkeitsrechnung. In: Borkowski, L. (ed.) Jan Lukasiewicz – Selected Works, Amsterdam, London Warsaw, pp. 16–63. North-Holland, Polish Scientific Publ. (1970); First published in Kraków, (1913)
Gomolińska, A.: A comparative study of some generalized rough approximations. Fundamenta Informaticae 51, 103–119 (2002)
Barwise, J.: Information Flow. In: The Logic of Distributed Systems, Cambridge University Press, UK (1997)
Devlin, K.: Logic and Information. Cambridge University Press, UK (1991)
Kripke, S.A.: Semantical analysis of intuitionistic logic. In: Crossley, J.N., Dummet, M.A.E. (eds.) Formal Systems and Recursive Functions, pp. 92–130. North- Holland, Amsterdam (1965)
Skowron, A., Stepaniuk, J., Peters, J.F.: Rough sets and infomorphisms: Towards approximation of relations in distributed environments. Fundamenta Informaticae 54, 263–277 (2003)
Pawlak, Z., Polkowski, L., Skowron, A.: Rough sets and rough logic: A KDD perspective. In: Polkowski, L., Tsumoto, S., Lin, T.Y. (eds.) Rough Set Methods and Applications: New Developments in Knowledge Discovery in Information Systems, pp. 583–646. Physica, Heidelberg (2001)
Gomolińska, A.: Satisfiability and meaning in approximation spaces. In: Lindemann, G., et al. (eds.) Proc. Workshop Concurrency, Specification, and Programming (CS&P’2004), Caputh, Germany, September 24-26. Informatik-Berichte, vol. 170, pp. 229–240. Humboldt-Universität zu Berlin, Berlin (2004)
Gomolińska, A.: A graded applicability of rules. In: Tsumoto, S., Słowiński, R., Komorowski, J., Grzymała-Busse, J.W. (eds.) RSCTC 2004. LNCS (LNAI), vol. 3066, pp. 213–218. Springer, Heidelberg (2004)
Pogorzelski, W.A.: Notions and Theorems of Elementary Formal Logic. Białystok Division of Warsaw University, Białystok (1994)
Tsumoto, S.: Modelling medical diagnostic rules based on rough sets. In: Polkowski, L., Skowron, A. (eds.) RSCTC 1998. LNCS (LNAI), vol. 1424, pp. 475–482. Springer, Heidelberg (1998)
Mollestad, T.: A Rough Set Approach to Data Mining: Extracting a Logic of Default Rules from Data, Ph.D. Dissertation. NTNU, Trondheim (1997)
Reiter, R.: A logic for default reasoning. Artificial Intelligence J. 13, 81–132 (1980)
Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of items in large databases. In: Proc. ACM SIGMOD Int. Conf. on Management of Data, Washington, D.C, pp. 207–216 (1993)
Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proc. 20th Conf. on Very Large Databases, Santiago, Chile, pp. 487–499 (1994)
Kryszkiewicz, M.: Fast discovery of representative association rules. In: Polkowski, L., Skowron, A. (eds.) RSCTC 1998. LNCS (LNAI), vol. 1424, pp. 214–221. Springer, Heidelberg (1998)
Lin, T.Y., Louie, E.: Association rules with additional semantics modeled by binary relations. In: Inuiguchi, M., Hirano, S., Tsumoto, S. (eds.) Rough Set Theory and Granular Computing. Studies in Fuzziness and Soft Computing, vol. 125, pp. 147–156. Springer, Heidelberg (2003)
Murai, T., Nakata, M., Sato, Y.: Association rules from a point of view of conditional logic. In: Inuiguchi, M., Hirano, S., Tsumoto, S. (eds.) Rough Set Theory and Granular Computing. Studies in Fuzziness and Soft Computing, vol. 125, pp. 137–145. Springer, Heidelberg (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gomolińska, A. (2005). Rough Validity, Confidence, and Coverage of Rules in Approximation Spaces. In: Peters, J.F., Skowron, A. (eds) Transactions on Rough Sets III. Lecture Notes in Computer Science, vol 3400. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11427834_3
Download citation
DOI: https://doi.org/10.1007/11427834_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-25998-5
Online ISBN: 978-3-540-31850-7
eBook Packages: Computer ScienceComputer Science (R0)