[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Eliminating Dummy Elimination

  • Conference paper
Automated Deduction - CADE-17 (CADE 2000)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1831))

Included in the following conference series:

  • 462 Accesses

Abstract

This paper is concerned with methods that automatically prove termination of term rewrite systems. The aim of dummy elimination, a method to prove termination introduced by Ferreira and Zantema, is to transform a given rewrite system into a rewrite system whose termination is easier to prove. We show that dummy elimination is subsumed by the more recent dependency pair method of Arts and Giesl. More precisely, if dummy elimination succeeds in transforming a rewrite system into a so-called simply terminating rewrite system then termination of the given rewrite system can be directly proved by the dependency pair technique. Even stronger, using dummy elimination as a preprocessing step to the dependency pair technique does not have any advantages either. We show that to a large extent these results also hold for the argument filtering transformation of Kusakari et al.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arts, T., Giesl, J.: Automatically Proving Termination where Simplification Orderings Fail. In: Bidoit, M., Dauchet, M. (eds.) CAAP 1997, FASE 1997, and TAPSOFT 1997. LNCS, vol. 1214, pp. 261–273. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  2. Arts, T., Giesl, J.: Termination of Term Rewriting Using Dependency Pairs. Theoretical Computer Science 236, 133–178 (2000), Long version available at www.inferenzsysteme.informatik.tu-darmstadt.de/~reports/ibn-97-46.ps

    Article  MATH  MathSciNet  Google Scholar 

  3. Arts, T., Giesl, J.: Modularity of termination using dependency pairs. In: Nipkow, T. (ed.) RTA 1998. LNCS, vol. 1379, pp. 226–240. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  4. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  5. Bellegarde, F., Lescanne, P.: Termination by Completion, Applicable Algebra in Engineering. Communication and Computing 1, 79–96 (1990)

    MATH  MathSciNet  Google Scholar 

  6. Ben Cherifa, A., Lescanne, P.: Termination of Rewriting Systems by Polynomial Interpretations and its Implementation. Science of Computer Programming 9, 137–159 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  7. Dershowitz, N.: Orderings for Term-Rewriting Systems. Theoretical Computer Science 17, 279–301 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  8. Dershowitz, N.: Termination of Rewriting. Journal of Symbolic Computation 3, 69–116 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dick, J., Kalmus, J., Martin, U.: Automating the Knuth Bendix Ordering. Acta Informatica 28, 95–119 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  10. Ferreira, M.C.F.: Termination of Term Rewriting: Well-foundedness, Totality and Transformations, Ph.D. thesis, Utrecht University, The Netherlands (1995)

    Google Scholar 

  11. Ferreira, M.C.F., Zantema, H.: Dummy Elimination: Making Termination Easier. In: Reichel, H. (ed.) FCT 1995. LNCS, vol. 965, pp. 243–252. Springer, Heidelberg (1995)

    Google Scholar 

  12. Giesl, J.: Generating Polynomial Orderings for Termination Proofs. In: Hsiang, J. (ed.) RTA 1995. LNCS, vol. 914, pp. 426–431. Springer, Heidelberg (1995)

    Google Scholar 

  13. J. Giesl and E. Ohlebusch, Pushing the Frontiers of Combining Rewrite Systems Farther Outwards. In: Proc. 2nd FROCOS 1998, Amsterdam, The Netherlands, Studies in Logic and Computation 7, pp. 141–160. Research Studies Press, Wiley (2000)

    Google Scholar 

  14. Kamin, S., Lévy, J.J.: Two Generalizations of the Recursive Path Ordering, University of Illinois, USA (1980) (unpublished manuscript)

    Google Scholar 

  15. Knuth, D.E., Bendix, P.: Simple Word Problems in Universal Algebras. In: Leech, J. (ed.) Computational Problems in Abstract Algebra, pp. 263–297. Pergamon Press, Oxford (1970)

    Google Scholar 

  16. Kusakari, K., Nakamura, M., Toyama, Y.: Argument Filtering Transformation. In: Nadathur, G. (ed.) PPDP 1999. LNCS, vol. 1702, pp. 48–62. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  17. Lankford, D.: On Proving Term Rewriting Systems are Noetherian, ReportMTP-3, Louisiana Technical University, Ruston, USA (1979)

    Google Scholar 

  18. Middeldorp, A., Ohsaki, H., Zantema, H.: Transforming Termination by Self- Labelling. In: McRobbie, M.A., Slaney, J.K. (eds.) CADE 1996. LNCS (LNAI), vol. 1104, pp. 373–387. Springer, Heidelberg (1996)

    Google Scholar 

  19. Steinbach, J.: Simplification Orderings: History of Results. Fundamenta Informaticae 24, 47–87 (1995)

    MATH  MathSciNet  Google Scholar 

  20. Xi, H.: Towards Automated Termination Proofs Through “Freezing”. In: Nipkow, T. (ed.) RTA 1998. LNCS, vol. 1379, pp. 271–285. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  21. Zantema, H.: Termination of Term Rewriting: Interpretation and Type Elimination. Journal of Symbolic Computation 17, 23–50 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  22. Zantema, H.: Termination of Term Rewriting by Semantic Labelling. Fundamenta Informaticae 24, 89–105 (1995)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Giesl, J., Middeldorp, A. (2000). Eliminating Dummy Elimination. In: McAllester, D. (eds) Automated Deduction - CADE-17. CADE 2000. Lecture Notes in Computer Science(), vol 1831. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10721959_25

Download citation

  • DOI: https://doi.org/10.1007/10721959_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67664-5

  • Online ISBN: 978-3-540-45101-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics